Global sensitivity analysis of ozone production and O 3-NO x-VOC limitation based on field data

Shuang Chen, William H. Brune

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Global sensitivity analysis was performed to study the effects of model uncertainties on the predictions of urban ozone production and its limitation by NO x or VOCs. Uncertainties were assigned for hundreds of model parameters including measurements used to constrain the model as well as kinetic rate coefficients and product yields of chemical reactions. Monte Carlo simulations were run using a zero-dimensional box model with 76 representative base cases of different initial conditions extracted from the measurements of a field campaign conducted in Houston, Texas. The results showed that relative uncertainty (±1σ) of ozone production exhibits a pattern of higher uncertainty at morning rush hour (about 30-40%) and lower uncertainty in the afternoon (about 20-30%). The model uncertainty comes mostly from uncertainties in chemical schemes while the uncertainties in measurements are less influential. The most important model parameters are generally associated with the amounts of acetaldehyde, the photolysis of HONO and HCHO(→HO 2), and the reactions of OH with NO 2, HO 2 with NO, and xylenes with OH. The uncertainties in these parameters could also shift the ozone-precursor relation between the NO x-sensitive and VOC-sensitive regimes. The greater values of the NO amount and the reaction rates of NO 2 + OH, NO + HO 2 and ISOP (isoprene peroxy radicals) + NO increase VOC-sensitivity, while greater values of aldehydes amounts and kinetic rate coefficients for reactions of OH with aldehydes and xylenes and of ISOP with HO 2 increase NO x-sensitivity of ozone under the studied conditions.

Original languageEnglish (US)
Pages (from-to)288-296
Number of pages9
JournalAtmospheric Environment
Volume55
DOIs
StatePublished - Aug 2012

All Science Journal Classification (ASJC) codes

  • General Environmental Science
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Global sensitivity analysis of ozone production and O 3-NO x-VOC limitation based on field data'. Together they form a unique fingerprint.

Cite this