TY - CHAP
T1 - Globalization and asphericity
AU - Alexander, Stephanie
AU - Kapovitch, Vitali
AU - Petrunin, Anton
N1 - Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - In this chapter we introduce locally $$\mathrm{CAT}^{}(0)$$ spaces and prove the globalization theorem that provides a sufficient condition for locally $$\mathrm{CAT}^{}(0)$$ spaces to be globally $$\mathrm{CAT}^{}(0)$$. The theorem implies in particular that the universal metric cover of a proper length, locally $$\mathrm{CAT}^{}(0)$$ space is a proper length $$\mathrm{CAT}^{}(0)$$ space. It follows that any proper length, locally $$\mathrm{CAT}^{}(0)$$ space is aspherical; that is, its universal cover is contractible.
AB - In this chapter we introduce locally $$\mathrm{CAT}^{}(0)$$ spaces and prove the globalization theorem that provides a sufficient condition for locally $$\mathrm{CAT}^{}(0)$$ spaces to be globally $$\mathrm{CAT}^{}(0)$$. The theorem implies in particular that the universal metric cover of a proper length, locally $$\mathrm{CAT}^{}(0)$$ space is a proper length $$\mathrm{CAT}^{}(0)$$ space. It follows that any proper length, locally $$\mathrm{CAT}^{}(0)$$ space is aspherical; that is, its universal cover is contractible.
UR - http://www.scopus.com/inward/record.url?scp=85101069405&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101069405&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-05312-3_3
DO - 10.1007/978-3-030-05312-3_3
M3 - Chapter
AN - SCOPUS:85101069405
T3 - SpringerBriefs in Mathematics
SP - 33
EP - 48
BT - SpringerBriefs in Mathematics
PB - Springer Science and Business Media B.V.
ER -