Globally Interpretable Graph Learning via Distribution Matching

Yi Nian, Yurui Chang, Wei Jin, Lu Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Graph neural networks (GNNs) have emerged as a powerful model to capture critical graph patterns. Instead of treating them as black boxes in an end-to-end fashion, attempts are arising to explain the model behavior. Existing works mainly focus on local interpretation to reveal the discriminative pattern for each individual instance, which however cannot directly reflect the high-level model behavior across instances. To gain global insights, we aim to answer an important question that is not yet well studied: how to provide a global interpretation for the graph learning procedure? We formulate this problem as globally interpretable graph learning, which targets on distilling high-level and human-intelligible patterns that dominate the learning procedure, such that training on this pattern can recover a similar model. As a start, we propose a novel model fidelity metric, tailored for evaluating the fidelity of the resulting model trained on interpretations. Our preliminary analysis shows that interpretative patterns generated by existing global methods fail to recover the model training procedure. Thus, we further propose our solution, Graph Distribution Matching (GDM), which synthesizes interpretive graphs by matching the distribution of the original and interpretive graphs in the GNN's feature space as its training proceeds, thus capturing the most informative patterns the model learns during training. Extensive experiments on graph classification datasets demonstrate multiple advantages of the proposed method, including high model fidelity, predictive accuracy and time efficiency, as well as the ability to reveal class-relevant structure.

Original languageEnglish (US)
Title of host publicationWWW 2024 - Proceedings of the ACM Web Conference
PublisherAssociation for Computing Machinery, Inc
Pages992-1002
Number of pages11
ISBN (Electronic)9798400701719
DOIs
StatePublished - May 13 2024
Event33rd ACM Web Conference, WWW 2024 - Singapore, Singapore
Duration: May 13 2024May 17 2024

Publication series

NameWWW 2024 - Proceedings of the ACM Web Conference

Conference

Conference33rd ACM Web Conference, WWW 2024
Country/TerritorySingapore
CitySingapore
Period5/13/245/17/24

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Globally Interpretable Graph Learning via Distribution Matching'. Together they form a unique fingerprint.

Cite this