TY - JOUR
T1 - Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6
AU - Shirazi, Rozita
AU - Palsdottir, Vilborg
AU - Collander, Jim
AU - Anesten, Fredrik
AU - Vogel, Heike
AU - Langlet, Fanny
AU - Jaschke, Alexander
AU - Schürmann, Annette
AU - Prévot, Vincent
AU - Shao, Ruijin
AU - Jansson, John Olov
AU - Skibicka, Karolina Patrycja
PY - 2013/10/1
Y1 - 2013/10/1
N2 - Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1β (IL-1β) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1β in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.
AB - Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1β (IL-1β) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1β in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.
UR - http://www.scopus.com/inward/record.url?scp=84885031186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885031186&partnerID=8YFLogxK
U2 - 10.1073/pnas.1306799110
DO - 10.1073/pnas.1306799110
M3 - Article
C2 - 24048027
AN - SCOPUS:84885031186
SN - 0027-8424
VL - 110
SP - 16199
EP - 16204
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 40
ER -