TY - JOUR
T1 - Glutathione catabolism by the ischemic rat kidney.
AU - Slusser, S. O.
AU - Grotyohann, L. W.
AU - Martin, L. F.
AU - Scaduto, R. C.
N1 - Copyright:
This record is sourced from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
PY - 1990/6
Y1 - 1990/6
N2 - The glutathione (GSH) content of rat kidney decreases after cessation of blood flow, falling to 40% of control levels 35 min after renal artery occlusion [R. C. Scaduto, Jr., V. H. Gattone II, L. W. Grotyohann, J. Wertz, and L. F. Martin. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F911-F921, 1988]. Renal GSH levels remained depressed for at least 2 h after resumption of blood flow. Because GSH functions in the removal of free radicals, and lipid peroxidation is a free radical-initiated process that occurs in the ischemic kidney, we investigated the fate of this GSH pool in the ischemic kidney. Using high-performance liquid chromatography to measure thiols, we found the loss of GSH to be associated with a stoichiometric accumulation of cysteine in the kidney. Moreover, preischemic labeling of the renal GSH pool with 35S led to accumulation of [35S]cysteine during ischemia that had the same specific activity as that of tissue GSH. Formation of cysteine during ischemia was suppressed in rats pretreated with acivicin, an inhibitor of gamma-glutamyltransferase (gamma-GT), although the degree of suppression was small in comparison to the extent of gamma-GT inhibition. During the initial 2 min of blood reflow after ischemia, tissue cysteine returned to control levels, and a transient increase in the cysteine content of renal venous blood was observed. After ischemia, renal GSH levels remained depressed, but postischemic GSH levels could be increased by administration of N-acetylcysteine during the ischemic period.(ABSTRACT TRUNCATED AT 250 WORDS)
AB - The glutathione (GSH) content of rat kidney decreases after cessation of blood flow, falling to 40% of control levels 35 min after renal artery occlusion [R. C. Scaduto, Jr., V. H. Gattone II, L. W. Grotyohann, J. Wertz, and L. F. Martin. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F911-F921, 1988]. Renal GSH levels remained depressed for at least 2 h after resumption of blood flow. Because GSH functions in the removal of free radicals, and lipid peroxidation is a free radical-initiated process that occurs in the ischemic kidney, we investigated the fate of this GSH pool in the ischemic kidney. Using high-performance liquid chromatography to measure thiols, we found the loss of GSH to be associated with a stoichiometric accumulation of cysteine in the kidney. Moreover, preischemic labeling of the renal GSH pool with 35S led to accumulation of [35S]cysteine during ischemia that had the same specific activity as that of tissue GSH. Formation of cysteine during ischemia was suppressed in rats pretreated with acivicin, an inhibitor of gamma-glutamyltransferase (gamma-GT), although the degree of suppression was small in comparison to the extent of gamma-GT inhibition. During the initial 2 min of blood reflow after ischemia, tissue cysteine returned to control levels, and a transient increase in the cysteine content of renal venous blood was observed. After ischemia, renal GSH levels remained depressed, but postischemic GSH levels could be increased by administration of N-acetylcysteine during the ischemic period.(ABSTRACT TRUNCATED AT 250 WORDS)
UR - http://www.scopus.com/inward/record.url?scp=0025441284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025441284&partnerID=8YFLogxK
M3 - Article
C2 - 1972865
AN - SCOPUS:0025441284
SN - 0002-9513
VL - 258
SP - F1546-1553
JO - The American journal of physiology
JF - The American journal of physiology
IS - 6 Pt 2
ER -