TY - JOUR
T1 - Glycoside hydrolase DisH from Desulfovibrio vulgaris degrades the N-acetylgalactosamine component of diverse biofilms
AU - Zhu, Lei
AU - Poosarla, Venkata G.
AU - Song, Sooyeon
AU - Wood, Thammajun L.
AU - Miller, Daniel S.
AU - Yin, Bei
AU - Wood, Thomas K.
N1 - Publisher Copyright:
© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd
PY - 2018/6
Y1 - 2018/6
N2 - Biofilms of sulfate-reducing bacteria (SRB) produce H2S, which contributes to corrosion. Although bacterial cells in biofilms are cemented together, they often dissolve their own biofilm to allow the cells to disperse. Using Desulfovibrio vulgaris as a model SRB, we sought polysaccharide-degrading enzymes that disperse its biofilm. Using a whole-genome approach, we identified eight enzymes as putative extracellular glycoside hydrolases including DisH (DVU2239, dispersal hexosaminidase), an enzyme that we demonstrated here, by utilizing various p-nitrooligosaccharide substrates, to be an N-acetyl-β-D-hexosaminidase. For N-acetyl-β-D-galactosamine (GalNAc), Vmax was 3.6 µmol of p-nitrophenyl/min (mg protein)−1 and Km was 0.8 mM; the specific activity for N-acetyl β-D-glucosamine (GlcNAc) was 7.8 µmol of p-nitrophenyl/min (mg protein)−1. Since GalNAc is one of the three exopolysaccharide matrix components of D. vulgaris, purified DisH was found to disperse 63 ± 2% biofilm as well as inhibit biofilm formation up to 47 ± 4%. The temperature and pH optima are 60°C and pH 6, respectively; DisH is also inhibited by copper and is secreted. In addition, since polymers of GalNAc and GlcNAc are found in the matrix of diverse bacteria, DisH dispersed biofilms of Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis. Therefore, DisH has the potential to inhibit and disperse a wide-range of biofilms.
AB - Biofilms of sulfate-reducing bacteria (SRB) produce H2S, which contributes to corrosion. Although bacterial cells in biofilms are cemented together, they often dissolve their own biofilm to allow the cells to disperse. Using Desulfovibrio vulgaris as a model SRB, we sought polysaccharide-degrading enzymes that disperse its biofilm. Using a whole-genome approach, we identified eight enzymes as putative extracellular glycoside hydrolases including DisH (DVU2239, dispersal hexosaminidase), an enzyme that we demonstrated here, by utilizing various p-nitrooligosaccharide substrates, to be an N-acetyl-β-D-hexosaminidase. For N-acetyl-β-D-galactosamine (GalNAc), Vmax was 3.6 µmol of p-nitrophenyl/min (mg protein)−1 and Km was 0.8 mM; the specific activity for N-acetyl β-D-glucosamine (GlcNAc) was 7.8 µmol of p-nitrophenyl/min (mg protein)−1. Since GalNAc is one of the three exopolysaccharide matrix components of D. vulgaris, purified DisH was found to disperse 63 ± 2% biofilm as well as inhibit biofilm formation up to 47 ± 4%. The temperature and pH optima are 60°C and pH 6, respectively; DisH is also inhibited by copper and is secreted. In addition, since polymers of GalNAc and GlcNAc are found in the matrix of diverse bacteria, DisH dispersed biofilms of Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis. Therefore, DisH has the potential to inhibit and disperse a wide-range of biofilms.
UR - http://www.scopus.com/inward/record.url?scp=85043578906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043578906&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.14064
DO - 10.1111/1462-2920.14064
M3 - Article
C2 - 29411481
AN - SCOPUS:85043578906
SN - 1462-2912
VL - 20
SP - 2026
EP - 2037
JO - Environmental microbiology
JF - Environmental microbiology
IS - 6
ER -