TY - GEN
T1 - GPT-who
T2 - 2024 Findings of the Association for Computational Linguistics: NAACL 2024
AU - Venkatraman, Saranya
AU - Uchendu, Adaku
AU - Lee, Dongwon
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - The Uniform Information Density (UID) principle posits that humans prefer to spread information evenly during language production. We examine if this UID principle can help capture differences between Large Language Models (LLMs)-generated and human-generated texts. We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector. This detector employs UID-based features to model the unique statistical signature of each LLM and human author for accurate detection. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical) such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over 20% across domains. In addition to better performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible. UID-based measures for all datasets and code are available at https://github.com/saranya-venkatraman/gpt-who.
AB - The Uniform Information Density (UID) principle posits that humans prefer to spread information evenly during language production. We examine if this UID principle can help capture differences between Large Language Models (LLMs)-generated and human-generated texts. We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector. This detector employs UID-based features to model the unique statistical signature of each LLM and human author for accurate detection. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical) such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over 20% across domains. In addition to better performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible. UID-based measures for all datasets and code are available at https://github.com/saranya-venkatraman/gpt-who.
UR - http://www.scopus.com/inward/record.url?scp=85197906490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197906490&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85197906490
T3 - Findings of the Association for Computational Linguistics: NAACL 2024 - Findings
SP - 103
EP - 115
BT - Findings of the Association for Computational Linguistics
A2 - Duh, Kevin
A2 - Gomez, Helena
A2 - Bethard, Steven
PB - Association for Computational Linguistics (ACL)
Y2 - 16 June 2024 through 21 June 2024
ER -