Graph Attention Networks over Edge Content-Based Channels

Lu Lin, Hongning Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Edges play a crucial role in passing information on a graph, especially when they carry textual content reflecting semantics behind how nodes are linked and interacting with each other. In this paper, we propose a channel-aware attention mechanism enabled by edge text content when aggregating information from neighboring nodes; and we realize this mechanism in a graph autoencoder framework. Edge text content is encoded as low-dimensional mixtures of latent topics, which serve as semantic channels for topic-level information passing on edges. We embed nodes and topics in the same latent space to capture their mutual dependency when decoding the structural and textual information on graph. We evaluated the proposed model on Yelp user-item bipartite graph and StackOverflow user-user interaction graph. The proposed model outperformed a set of baselines on link prediction and content prediction tasks. Qualitative evaluations also demonstrated the descriptive power of the learnt node embeddings, showing its potential as an interpretable representation of graphs.

Original languageEnglish (US)
Title of host publicationKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1819-1827
Number of pages9
ISBN (Electronic)9781450379984
DOIs
StatePublished - Aug 23 2020
Event26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, United States
Duration: Aug 23 2020Aug 27 2020

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Country/TerritoryUnited States
CityVirtual, Online
Period8/23/208/27/20

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Graph Attention Networks over Edge Content-Based Channels'. Together they form a unique fingerprint.

Cite this