TY - GEN
T1 - Graph embedding with hierarchical attentive membership
AU - Lin, Lu
AU - Blaser, Ethan
AU - Wang, Hongning
N1 - Publisher Copyright:
© 2022 Owner/Author.
PY - 2022/2/11
Y1 - 2022/2/11
N2 - This paper studies a remarkable property of graphs which is the latent hierarchical grouping of nodes, where each node manifests its membership to a specific group based on the context composed by its neighboring nodes. When modeling the neighborhood structure for graph representation learning, most prior works ignore such latent groups and nodes' membership to different groups, not to mention the hierarchy. Thus, they fall short of delivering a comprehensive understanding of the nodes under different contexts in a graph. In this paper, we propose a novel hierarchical attentive membership model for graph embedding, where the latent memberships for each node are dynamically discovered based on its neighboring context. Both group-level and individual-level attentions are performed when aggregating neighboring states to generate node embeddings. We introduce structural constraints to explicitly regularize the inferred memberships of each node, such that a well-defined hierarchical grouping structure is captured. The proposed model outperformed a set of state-of-the-art graph embedding solutions on node classification and link prediction tasks in a variety of graphs including citation networks and social networks. Qualitative evaluations visualize the learned node embeddings along with the inferred memberships, which proved the concept of membership hierarchy and enables explainable embedding learning in graphs.
AB - This paper studies a remarkable property of graphs which is the latent hierarchical grouping of nodes, where each node manifests its membership to a specific group based on the context composed by its neighboring nodes. When modeling the neighborhood structure for graph representation learning, most prior works ignore such latent groups and nodes' membership to different groups, not to mention the hierarchy. Thus, they fall short of delivering a comprehensive understanding of the nodes under different contexts in a graph. In this paper, we propose a novel hierarchical attentive membership model for graph embedding, where the latent memberships for each node are dynamically discovered based on its neighboring context. Both group-level and individual-level attentions are performed when aggregating neighboring states to generate node embeddings. We introduce structural constraints to explicitly regularize the inferred memberships of each node, such that a well-defined hierarchical grouping structure is captured. The proposed model outperformed a set of state-of-the-art graph embedding solutions on node classification and link prediction tasks in a variety of graphs including citation networks and social networks. Qualitative evaluations visualize the learned node embeddings along with the inferred memberships, which proved the concept of membership hierarchy and enables explainable embedding learning in graphs.
UR - http://www.scopus.com/inward/record.url?scp=85125794035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125794035&partnerID=8YFLogxK
U2 - 10.1145/3488560.3498499
DO - 10.1145/3488560.3498499
M3 - Conference contribution
AN - SCOPUS:85125794035
T3 - WSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining
SP - 582
EP - 590
BT - WSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining
PB - Association for Computing Machinery, Inc
T2 - 15th ACM International Conference on Web Search and Data Mining, WSDM 2022
Y2 - 21 February 2022 through 25 February 2022
ER -