TY - GEN
T1 - Graphical approach for influence maximization in social networks under generic threshold-based non-submodular model
AU - Ma, Liang
AU - Cao, Guohong
AU - Kaplan, Lance
PY - 2017/7/1
Y1 - 2017/7/1
N2 - As a widely observable social effect, influence diffusion refers to a process where innovations, trends, awareness, etc. spread across the network via the social impact among individuals. Motivated by such social effect, the concept of influence maximization is coined, where the goal is to select a bounded number of the most influential nodes (seed nodes) from a social network so that they can jointly trigger the maximal influence diffusion. A rich body of research in this area is performed under statistical diffusion models with provable submodularity, which essentially simplifies the problem as the optimal result can be approximated by the simple greedy search. When the diffusion models are non-submodular, however, the research community mostly focuses on how to bound/approximate them by tractable submodular functions. In other words, there is still a lack of efficient methods that can directly resolve non-submodular influence maximization problems. In this regard, we fill the gap by proposing seed selection strategies using network graphical properties in a generalized non-submodular threshold-based model, called influence barricade model. Under this model, we first establish theories to reveal graphical conditions that ensure the network generated by node removals has the same optimal seed set as that in the original network. We then exploit these theoretical conditions to develop efficient algorithms by strategically removing less-important nodes and selecting seeds only in the remaining network. To the best of our knowledge, this is the first graph-based approach that directly tackles non-submodular influence maximization. Evaluations on both synthetic and real-world Facebook/Twitter datasets confirm the superior efficiency of the proposed algorithms, which are orders of magnitude faster than benchmarks for large networks.
AB - As a widely observable social effect, influence diffusion refers to a process where innovations, trends, awareness, etc. spread across the network via the social impact among individuals. Motivated by such social effect, the concept of influence maximization is coined, where the goal is to select a bounded number of the most influential nodes (seed nodes) from a social network so that they can jointly trigger the maximal influence diffusion. A rich body of research in this area is performed under statistical diffusion models with provable submodularity, which essentially simplifies the problem as the optimal result can be approximated by the simple greedy search. When the diffusion models are non-submodular, however, the research community mostly focuses on how to bound/approximate them by tractable submodular functions. In other words, there is still a lack of efficient methods that can directly resolve non-submodular influence maximization problems. In this regard, we fill the gap by proposing seed selection strategies using network graphical properties in a generalized non-submodular threshold-based model, called influence barricade model. Under this model, we first establish theories to reveal graphical conditions that ensure the network generated by node removals has the same optimal seed set as that in the original network. We then exploit these theoretical conditions to develop efficient algorithms by strategically removing less-important nodes and selecting seeds only in the remaining network. To the best of our knowledge, this is the first graph-based approach that directly tackles non-submodular influence maximization. Evaluations on both synthetic and real-world Facebook/Twitter datasets confirm the superior efficiency of the proposed algorithms, which are orders of magnitude faster than benchmarks for large networks.
UR - http://www.scopus.com/inward/record.url?scp=85047744771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047744771&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8258017
DO - 10.1109/BigData.2017.8258017
M3 - Conference contribution
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 970
EP - 975
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
Y2 - 11 December 2017 through 14 December 2017
ER -