TY - GEN
T1 - Graphical spreadsheets as convenient tools for turbomachinery education
AU - Miller, Timothy F.
N1 - Funding Information:
Acknowledgement. The authors thank M. Symko-Davies, B. McConnell, K. Emery, S. Kurtz, J. Kiehl, T. Moriarty, W. Metzger, R. Ahrenkiel, B. Keyes, M. Romero, D. Friedman and J. Olson at NREL; and G. Kinsey, H. Cotal, A. Paredes, Y. Aguirre, P. Colter, T. Isshiki, M. Haddad, K. Barbour, M. Takahashi, M. Kalachian, and G. Glenn, and the entire multijunction solar cell team at Spec-trolab. This work was supported in part by the Department of Energy through the NREL High-Performance PV program (NAT-1-30620-01), and by Spectrolab.
PY - 2001
Y1 - 2001
N2 - An unfortunate aspect of engineering education in general, and turbomachinery education in specific, has been the difficulty of incorporating the design aspect of instruction with the time-consuming components that make up theoretical instruction. The primary reason for this difficulty is the extremely limited time (typically three months) allocated to teach turbomachinery as a senior-level quarter or semester technical elective. It is desirable to develop an educational design tool that can be simultaneously exercised by a student to perform various design tasks and function as a means of theoretical instruction. Such a tool can permit the students both greater depth and breadth of exposure and may be subsequently used by the students in their future capacity as professional engineers. In this paper, this tool is illustrated by several applications of a commercial "graphical spreadsheet" software package (MathCAD, though others such as Mathmatica and Macsyma are appropriate as well). Some graphical spreadsheet design tools are presented, and these tools are applied to the analysis and design of a radial pump, centrifugal compressor, and radial-inflow turbine.
AB - An unfortunate aspect of engineering education in general, and turbomachinery education in specific, has been the difficulty of incorporating the design aspect of instruction with the time-consuming components that make up theoretical instruction. The primary reason for this difficulty is the extremely limited time (typically three months) allocated to teach turbomachinery as a senior-level quarter or semester technical elective. It is desirable to develop an educational design tool that can be simultaneously exercised by a student to perform various design tasks and function as a means of theoretical instruction. Such a tool can permit the students both greater depth and breadth of exposure and may be subsequently used by the students in their future capacity as professional engineers. In this paper, this tool is illustrated by several applications of a commercial "graphical spreadsheet" software package (MathCAD, though others such as Mathmatica and Macsyma are appropriate as well). Some graphical spreadsheet design tools are presented, and these tools are applied to the analysis and design of a radial pump, centrifugal compressor, and radial-inflow turbine.
UR - http://www.scopus.com/inward/record.url?scp=84905717538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905717538&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0105
DO - 10.1115/2001-GT-0105
M3 - Conference contribution
AN - SCOPUS:84905717538
SN - 9780791878538
T3 - Proceedings of the ASME Turbo Expo
BT - Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -