Abstract
We propose a novel unsupervised method for discovering recurring patterns from a single view. A key contribution of our approach is the formulation and validation of a joint assignment optimization problem where multiple visual words and object instances of a potential recurring pattern are considered simultaneously. The optimization is achieved by a greedy randomized adaptive search procedure (GRASP) with moves specifically designed for fast convergence. We have quantified systematically the performance of our approach under stressed conditions of the input (missing features, geometric distortions). We demonstrate that our proposed algorithm outperforms state of the art methods for recurring pattern discovery on a diverse set of 400+ real world and synthesized test images.
Original language | English (US) |
---|---|
Article number | 6619105 |
Pages (from-to) | 2003-2010 |
Number of pages | 8 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2013 |
Event | 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States Duration: Jun 23 2013 → Jun 28 2013 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition