GRAVITATIONAL-WAVE OBSERVATIONS MAY CONSTRAIN GAMMA-RAY BURST MODELS: The CASE of GW150914-GBM

P. Veres, R. D. Preece, A. Goldstein, P. Mészáros, E. Burns, V. Connaughton

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (∼10-3 cm-3) and a high Lorentz factor (∼2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford-Znajek model. If future joint observations confirm the GW-short-GRB association we can provide similar but more detailed tests for prompt emission models.

Original languageEnglish (US)
Article numberL34
JournalAstrophysical Journal Letters
Volume827
Issue number2
DOIs
StatePublished - Aug 20 2016

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'GRAVITATIONAL-WAVE OBSERVATIONS MAY CONSTRAIN GAMMA-RAY BURST MODELS: The CASE of GW150914-GBM'. Together they form a unique fingerprint.

Cite this