TY - JOUR
T1 - Growth differentiation factor-9 inhibits 3′5′-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells
AU - Yamamoto, Noriko
AU - Christenson, Lane K.
AU - McAllister, Janette
AU - Strauss, Jerome F.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2002
Y1 - 2002
N2 - Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor superfamily, modulates the development and function of granulosa and theca cells. Targeted deletion of GDF-9 in the mouse revealed that GDF-9 was essential for the establishment of the thecal cell layer during early folliculogenesis. During later stages of follicular development, the roles of GDF-9 are less well understood, but it has been postulated that oocyte-derived GDF-9 may prevent premature luteinization of follicular cells, based on its ability to modulate steroidogenesis by rodent ovarian cells. In the rodent, GDF-9 is expressed solely by the oocyte from the early primary follicular stage through ovulation. Recent studies in the rhesus monkey demonstrated that granulosa cells express GDF-9, suggesting a broader role for this protein in ovarian function in primates. We examined the effect of recombinant GDF-9 on proliferating human granulosa and thecal cell steroidogenesis and the expression of steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage, and P450 aromatase. We also examined granulosa cell GDF-9 expression by quantitative RT-PCR and by Western analysis. GDF-9 inhibited 8-Br-cAMP-stimulated granulosa progesterone synthesis by approximately 40%, but did not affect basal progesterone production. Concordant with reduced steroid production, 8-Br-cAMP-stimulated StAR protein expression was reduced approximately 40% in granulosa cells, as were expression of StAR mRNA and StAR promoter activity. Additionally, GDF-9 inhibited 8-Br-cAMP-stimulated expression of P450 side-chain cleavage and P450 aromatase. Human granulosa cells expressed GDF-9, as determined by RT-PCR and Western analysis. Treatment of human thecal cells with GDF-9 blocked forskolin-stimulated progesterone, 17α-hydroxyprogesterone, and dehydroepiandrosterone synthesis. Thecal cells exhibited greater sensitivity to GDF-9, suggesting that this cell may be a primary target of GDF-9. Moreover, GDF-9 increased thecal cell numbers during culture, but had no effect on granulosa cell growth. Our findings implicate GDF-9 in the modulation of follicular steroidogenesis, especially theca cell function. Because GDF-9 mRNA and protein are detectable in granulosa-lutein cells after the LH surge, the concept of GDF-9 as a solely oocyte-derived luteinization inhibitor needs to be reevaluated.
AB - Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor superfamily, modulates the development and function of granulosa and theca cells. Targeted deletion of GDF-9 in the mouse revealed that GDF-9 was essential for the establishment of the thecal cell layer during early folliculogenesis. During later stages of follicular development, the roles of GDF-9 are less well understood, but it has been postulated that oocyte-derived GDF-9 may prevent premature luteinization of follicular cells, based on its ability to modulate steroidogenesis by rodent ovarian cells. In the rodent, GDF-9 is expressed solely by the oocyte from the early primary follicular stage through ovulation. Recent studies in the rhesus monkey demonstrated that granulosa cells express GDF-9, suggesting a broader role for this protein in ovarian function in primates. We examined the effect of recombinant GDF-9 on proliferating human granulosa and thecal cell steroidogenesis and the expression of steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage, and P450 aromatase. We also examined granulosa cell GDF-9 expression by quantitative RT-PCR and by Western analysis. GDF-9 inhibited 8-Br-cAMP-stimulated granulosa progesterone synthesis by approximately 40%, but did not affect basal progesterone production. Concordant with reduced steroid production, 8-Br-cAMP-stimulated StAR protein expression was reduced approximately 40% in granulosa cells, as were expression of StAR mRNA and StAR promoter activity. Additionally, GDF-9 inhibited 8-Br-cAMP-stimulated expression of P450 side-chain cleavage and P450 aromatase. Human granulosa cells expressed GDF-9, as determined by RT-PCR and Western analysis. Treatment of human thecal cells with GDF-9 blocked forskolin-stimulated progesterone, 17α-hydroxyprogesterone, and dehydroepiandrosterone synthesis. Thecal cells exhibited greater sensitivity to GDF-9, suggesting that this cell may be a primary target of GDF-9. Moreover, GDF-9 increased thecal cell numbers during culture, but had no effect on granulosa cell growth. Our findings implicate GDF-9 in the modulation of follicular steroidogenesis, especially theca cell function. Because GDF-9 mRNA and protein are detectable in granulosa-lutein cells after the LH surge, the concept of GDF-9 as a solely oocyte-derived luteinization inhibitor needs to be reevaluated.
UR - http://www.scopus.com/inward/record.url?scp=0036072837&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036072837&partnerID=8YFLogxK
U2 - 10.1210/jc.87.6.2849
DO - 10.1210/jc.87.6.2849
M3 - Article
C2 - 12050262
AN - SCOPUS:0036072837
SN - 0021-972X
VL - 87
SP - 2849
EP - 2856
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 6
ER -