H 2 Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H 2 Activation at the Metal-Support Interface

Todd Whittaker, K. B.Sravan Kumar, Christine Peterson, Meagan N. Pollock, Lars C. Grabow, Bert D. Chandler

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

Water adsorbed at the metal-support interface (MSI) plays an important role in multiple reactions. Due to its importance in CO preferential oxidation (PrOx), we examined H 2 oxidation kinetics in the presence of water over Au/TiO 2 and Au/Al 2 O 3 catalysts, reaching the following mechanistic conclusions: (i) O 2 activation follows a similar mechanism to that proposed in CO oxidation catalysis; (ii) weakly adsorbed H 2 O is a strong reaction inhibitor; (iii) fast H 2 activation occurs at the MSI, and (iv) H 2 activation kinetics are inconsistent with traditional dissociative H 2 chemisorption on metals. Density functional theory (DFT) calculations using a supported Au nanorod model suggest H 2 activation proceeds through a heterolytic dissociation mechanism, resulting in a formal hydride residing on the Au and a proton bound to a surface TiOH group. This potential mechanism was supported by infrared spectroscopy experiments during H 2 adsorption on a deuterated Au/TiO 2 surface, which showed rapid H-D scrambling with surface hydroxyl groups. DFT calculations suggest that the reaction proceeds largely through proton-mediated pathways and that typical Brønsted-Evans Polanyi behavior is broken by introducing weak acid/base sites at the MSI. The kinetics data were successfully reinterpreted in the context of the heterolytic H 2 activation mechanism, tying together the experimental and computational evidence and rationalizing the observed inhibition by physiorbed water on the support as blocking the MSI sites required for heterolytic H 2 activation. In addition to providing evidence for this unusual H 2 activation mechanism, these results offer additional insight into why water dramatically improves CO PrOx catalysis over Au.

Original languageEnglish (US)
Pages (from-to)16469-16487
Number of pages19
JournalJournal of the American Chemical Society
Volume140
Issue number48
DOIs
StatePublished - Dec 5 2018

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'H 2 Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H 2 Activation at the Metal-Support Interface'. Together they form a unique fingerprint.

Cite this