Halide-CVD growth of bulk SiC crystals

A. Y. Polyakov, M. A. Fanton, M. Skowronski, H. J. Chung, S. Nigam, S. W. Huh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

A novel approach to the high growth rate Chemical Vapor Deposition of SiC is described. The Halide Chemical Vapor Deposition (HCVD) method uses SiCl 4, C3H8 (or CH4), and hydrogen as reactants. The use of halogenated Si source and of separate injection of Si and C precursors allows for preheating of source gases without causing premature chemical reactions. The stoichiometry of HCVD crystals can be controlled by changing the C/Si flow ratio and can be kept constant throughout growth, in contrast to the Physical Vapor Transport technique. HCVD was demonstrated to deposit high crystalline quality, very high purity 4H- and 6H-SiC crystals with growth rates comparable to other bulk SiC growth techniques. The densities of deep electron and hole traps are determined by growth temperature and C/Si ratio and can be as low as that found in standard silane-based CVD epitaxy. At high C/Si flow ratio, the resistivity of HCVD crystals exceeds 105 Ω-cm. These characteristics make HCVD an attractive method to grow SiC for applications in high-frequency and/or high voltage devices.

Original languageEnglish (US)
Title of host publicationSilicon Carbide and Related Materials 2005, - Proceedings of the International Conference on Silicon Carbide and Related Materials 2005
PublisherTrans Tech Publications Ltd
Pages21-26
Number of pages6
EditionPART 1
ISBN (Print)9780878494255
DOIs
StatePublished - 2006
EventInternational Conference on Silicon Carbide and Related Materials 2005, (ICSCRM 2005) - Pittsburgh, PA, United States
Duration: Sep 18 2005Sep 23 2005

Publication series

NameMaterials Science Forum
NumberPART 1
Volume527-529
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

OtherInternational Conference on Silicon Carbide and Related Materials 2005, (ICSCRM 2005)
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/18/059/23/05

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Halide-CVD growth of bulk SiC crystals'. Together they form a unique fingerprint.

Cite this