Hardness of single phase high entropy carbide ceramics with different compositions

Paul M. Brune, Gregory E. Hilmas, William G. Fahrenholtz, Jeremy L. Watts, Caillin J. Ryan, Chris M. DeSalle, Douglas E. Wolfe, Stefano Curtarolo

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Five high entropy carbide ceramics, (Hf0.2,Nb0.2,Ta0.2,Ti0.2,Zr0.2)C, (Cr0.2,Hf0.2,Ta0.2,Ti0.2,Zr0.2)C, (Hf0.2,Mo0.2,Ta0.2,Ti0.2,Zr0.2)C, (Hf0.2,Ta0.2,Ti0.2,W0.2,Zr0.2)C, and (Hf0.2,Mo0.2,Ti0.2,W0.2,Zr0.2)C, were synthesized by carbothermal reduction of oxides and direct current sintering. The five high entropy carbide ceramics were determined to be nominally phase-pure with relative densities of more than 98.9% and mean grain sizes of less than 5 μm. Average Vickers hardness values ranged from 19.2 ± 0.4 GPa for (Hf0.2,Nb0.2,Ta0.2,Ti0.2,Zr0.2)C at a load of 2 kgf to 43.5 ± 0.4 GPa for (Hf0.2,Mo0.2,Ti0.2,W0.2,Zr0.2)C at a load of 0.05 kgf. Hardness generally increased with increasing the valence electron concentration and strain as measured by the Williamson-Hall analysis. However, neither correlation was conclusive enough to be a clear indicator of hardness. Instead, it was determined that a combination of effects that includes the valence electron concentration, lattice strain, and grain size all contribute to the hardness of high entropy carbide ceramics.

Original languageEnglish (US)
Article number165106
JournalJournal of Applied Physics
Volume135
Issue number16
DOIs
StatePublished - Apr 28 2024

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Cite this