Hardware Trojans in Quantum Circuits, Their Impacts, and Defense

Rupshali Roy, Subrata Das, Swaroop Ghosh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The reliability of the outcome of a quantum circuit in near-term noisy quantum computers depends on the gate count and depth for a given problem. Circuits with a short depth and lower gate count can yield the correct solution more often than the variant with a higher gate count and depth. To work successfully for Noisy Intermediate Scale Quantum (NISQ) computers, quantum circuits need to be optimized efficiently using a compiler that decomposes high-level gates to native gates of the hardware. Many 3rd party compilers are being developed for lower compilation time, reduced circuit depth, and lower gate count for large quantum circuits. Such compilers, or even a specific release version of a compiler that is otherwise trustworthy, may be unreliable and give rise to security risks such as insertion of a quantum trojan during compilation that evades detection due to the lack of a golden/Oracle model in quantum computing. Trojans may corrupt the functionality to give flipped probabilities of basis states, or result in a lower probability of correct basis states in the output. In this paper, we investigate and discuss the impact of a single qubit Trojan (we have chosen a Hadamard gate and a NOT gate) inserted one at a time at various locations in benchmark quantum circuits without changing the the depth of the circuit. Results indicate an average of 16.18% degradation for the Hadamard Trojan without noise, and 7.78% with noise. For the NOT Trojan (with noise) there is 14.6% degradation over all possible inputs. We then discuss the detection of such Trojans in a quantum circuit using CNN-based classifier achieving an accuracy of 90%.

Original languageEnglish (US)
Title of host publicationProceedings of the 25th International Symposium on Quality Electronic Design, ISQED 2024
PublisherIEEE Computer Society
ISBN (Electronic)9798350309270
DOIs
StatePublished - 2024
Event25th International Symposium on Quality Electronic Design, ISQED 2024 - Hybrid, San Francisco, United States
Duration: Apr 3 2024Apr 5 2024

Publication series

NameProceedings - International Symposium on Quality Electronic Design, ISQED
ISSN (Print)1948-3287
ISSN (Electronic)1948-3295

Conference

Conference25th International Symposium on Quality Electronic Design, ISQED 2024
Country/TerritoryUnited States
CityHybrid, San Francisco
Period4/3/244/5/24

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Electrical and Electronic Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Hardware Trojans in Quantum Circuits, Their Impacts, and Defense'. Together they form a unique fingerprint.

Cite this