TY - JOUR
T1 - Harnessing expression data to identify novel candidate genes in polycystic ovary syndrome
AU - Jones, Michelle R.
AU - Chua, Angela
AU - Chen, Yii Der I.
AU - Li, Xiaohui
AU - Krauss, Ronald M.
AU - Rotter, Jerome I.
AU - Legro, Richard S.
AU - Azziz, Ricardo
AU - Goodarzi, Mark O.
PY - 2011
Y1 - 2011
N2 - Novel pathways in polycystic ovary syndrome (PCOS) are being identified in gene expression studies in PCOS tissues; such pathways may contain key genes in disease etiology. Previous expression studies identified both dickkopf homolog 1 (DKK1) and DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1) as differentially expressed in PCOS tissue, implicating them as candidates for PCOS susceptibility. To test this, we genotyped a discovery cohort of 335 PCOS cases and 198 healthy controls for three DKK1 single nucleotide polymorphisms (SNPs) and four DNAJB1 SNPs and a replication cohort of 396 PCOS cases and 306 healthy controls for 1 DKK1 SNP and 1 DNAJB1 SNP. SNPs and haplotypes were determined and tested for association with PCOS and component phenotypes. We found that no single nucleotide polymorphisms were associated with PCOS risk; however, the major allele of rs1569198 from DKK1 was associated with increased total testosterone (discovery cohort P = 0.0035) and dehydroepiandrosterone sulfate (replication cohort P = 0.05). Minor allele carriers at rs3962158 from DNAJB1 had increased fasting insulin (discovery cohort P = 0.003), increased HOMA-IR (discovery cohort P = 0.006; replication cohort P = 0.036), and increased HOMA-%B (discovery cohort P = 0.004). Carriers of haplotype 2 at DNAJB1 also had increased fasting insulin, HOMA-IR, and HOMA-%B. These findings suggest that genetic variation in DKK1 and DNAJB1 may have a role in the hyperandrogenic and metabolic dysfunction of PCOS, respectively. Our results also demonstrate the utility of gene expression data as a source of novel candidate genes in PCOS, a complex and still incompletely defined disease, for which alternative methods of gene identification are needed.
AB - Novel pathways in polycystic ovary syndrome (PCOS) are being identified in gene expression studies in PCOS tissues; such pathways may contain key genes in disease etiology. Previous expression studies identified both dickkopf homolog 1 (DKK1) and DnaJ (Hsp40) homolog, subfamily B, member 1 (DNAJB1) as differentially expressed in PCOS tissue, implicating them as candidates for PCOS susceptibility. To test this, we genotyped a discovery cohort of 335 PCOS cases and 198 healthy controls for three DKK1 single nucleotide polymorphisms (SNPs) and four DNAJB1 SNPs and a replication cohort of 396 PCOS cases and 306 healthy controls for 1 DKK1 SNP and 1 DNAJB1 SNP. SNPs and haplotypes were determined and tested for association with PCOS and component phenotypes. We found that no single nucleotide polymorphisms were associated with PCOS risk; however, the major allele of rs1569198 from DKK1 was associated with increased total testosterone (discovery cohort P = 0.0035) and dehydroepiandrosterone sulfate (replication cohort P = 0.05). Minor allele carriers at rs3962158 from DNAJB1 had increased fasting insulin (discovery cohort P = 0.003), increased HOMA-IR (discovery cohort P = 0.006; replication cohort P = 0.036), and increased HOMA-%B (discovery cohort P = 0.004). Carriers of haplotype 2 at DNAJB1 also had increased fasting insulin, HOMA-IR, and HOMA-%B. These findings suggest that genetic variation in DKK1 and DNAJB1 may have a role in the hyperandrogenic and metabolic dysfunction of PCOS, respectively. Our results also demonstrate the utility of gene expression data as a source of novel candidate genes in PCOS, a complex and still incompletely defined disease, for which alternative methods of gene identification are needed.
UR - http://www.scopus.com/inward/record.url?scp=79956136199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79956136199&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0020120
DO - 10.1371/journal.pone.0020120
M3 - Article
C2 - 21611153
AN - SCOPUS:79956136199
SN - 1932-6203
VL - 6
JO - PloS one
JF - PloS one
IS - 5
M1 - e20120
ER -