TY - JOUR
T1 - Harnessing neuroplasticity for clinical applications
AU - Cramer, Steven C.
AU - Sur, Mriganka
AU - Dobkin, Bruce H.
AU - O'Brien, Charles
AU - Sanger, Terence D.
AU - Trojanowski, John Q.
AU - Rumsey, Judith M.
AU - Hicks, Ramona
AU - Cameron, Judy
AU - Chen, Daofen
AU - Chen, Wen G.
AU - Cohen, Leonardo G.
AU - Decharms, Christopher
AU - Duffy, Charles J.
AU - Eden, Guinevere F.
AU - Fetz, Eberhard E.
AU - Filart, Rosemarie
AU - Freund, Michelle
AU - Grant, Steven J.
AU - Haber, Suzanne
AU - Kalivas, Peter W.
AU - Kolb, Bryan
AU - Kramer, Arthur F.
AU - Lynch, Minda
AU - Mayberg, Helen S.
AU - McQuillen, Patrick S.
AU - Nitkin, Ralph
AU - Pascual-Leone, Alvaro
AU - Reuter-Lorenz, Patricia
AU - Schiff, Nicholas
AU - Sharma, Anu
AU - Shekim, Lana
AU - Stryker, Michael
AU - Sullivan, Edith V.
AU - Vinogradov, Sophia
N1 - Funding Information:
This work is based on a workshop sponsored by the National Institutes of Health Blueprint for Neuroscience Research and held in April, 2009. The views expressed herein do not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Health and Human Services, or any other agency of the United States Government. Conflict of interest: Steven Cramer has received grant support from GlaxoSmithKline, Stem Cell Therapeutics and Panasonic and has received consulting income from GlaxoSmithKline, Stem Cell Therapeutics, Pfizer, Photothera, Allergan and Asubio. Christopher deCharms is an employee and stockholder in Omneuron, Inc., a research company that develops neuroimaging approaches for diagnosing and treating neurologic and psychiatric diseases. Helen S. Mayberg holds intellectual property in the field of deep brain stimulation for depression and is a consultant for St Jude Medical. Charles O’Brien has served as a consultant in the past year to Gilead, Alkermes, Reckitt and Embera. Alvaro Pascual-Leone serves on the medical advisory board for Nexstim, Neuronix, Neosync and Starlab.
PY - 2011/6
Y1 - 2011/6
N2 - Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
AB - Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
UR - http://www.scopus.com/inward/record.url?scp=79957794091&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957794091&partnerID=8YFLogxK
U2 - 10.1093/brain/awr039
DO - 10.1093/brain/awr039
M3 - Review article
C2 - 21482550
AN - SCOPUS:79957794091
SN - 0006-8950
VL - 134
SP - 1591
EP - 1609
JO - Brain
JF - Brain
IS - 6
ER -