Heat stable and intrinsically sterile liquid protein formulations

Atip Lawanprasert, Harminder Singh, Sopida Pimcharoen, Mariangely González Vargas, Arshiya Dewan, Girish S. Kirimanjeswara, Scott H. Medina

Research output: Contribution to journalArticlepeer-review

Abstract

Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility. This generates non-aqueous, fluorine-based liquid protein formulations that biochemically rigidify protein structure to yield thermally stable biologics at extreme temperatures (up to 90 °C). These non-aqueous formulations are impervious to contamination by microorganismal pathogens, degradative enzymes, and environmental impurities, and display comparable pre-clinical pharmacokinetics and safety profiles to standard saline protein samples. As a result, we deliver a fluorochemical formulation paradigm that may limit the need for cold chain logistics of protein reagents and biopharmaceuticals.

Original languageEnglish (US)
Article number10897
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Heat stable and intrinsically sterile liquid protein formulations'. Together they form a unique fingerprint.

Cite this