Heat transfer and film-cooling measurements on a stator vane with fan-shaped cooling holes

W. Colban, A. Gratton, K. A. Thole, M. Haendler

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

In a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single-row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single-row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.

Original languageEnglish (US)
Pages (from-to)53-61
Number of pages9
JournalJournal of Turbomachinery
Volume128
Issue number1
DOIs
StatePublished - Jan 2006

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Heat transfer and film-cooling measurements on a stator vane with fan-shaped cooling holes'. Together they form a unique fingerprint.

Cite this