Abstract
Key points: During exercise, the blood pressure (BP) response is exaggerated in peripheral artery disease (PAD). We examined whether heat treatment (HT) has beneficial effects on the exaggerated exercise pressor reflex in PAD rats. With HT (increase in basal muscle temperature of ∼1.5°C for 30 min, twice daily for three continuous days), the amplified BP response to muscle contraction is alleviated in PAD. We demonstrated that HT attenuates the enhancement of the BP response induced by stimulation of P2X in muscle afferent nerves of PAD rats. HT also attenuates the upregulation of the P2X3 and the increase in P2X currents in the muscle afferent neurons of PAD rats. Previous heat exposure plays a beneficial role in modifying the exaggeration of the exercise pressor reflex in PAD and a reduction in the activity of the P2X receptor pathway is probably a part of the mechanism mediating this improvement. Abstract: The current study was performed to examine if heat treatment (HT) has beneficial effects on the exaggerated exercise pressor reflex in rats with peripheral artery disease (PAD). We further determined if the temperature-sensitive P2X receptor is involved in the effects of HT. The pressor response to static muscle contraction and α,β-methylene ATP (αβ-me ATP, a P2X agonist) was examined. Western blot analysis was used to determine the protein levels of P2X3 in the dorsal root ganglion (DRG), and the whole cell patch clamp was used to examine the amplitude of P2X currents in the DRG neurons. The basal muscle temperature (Tm) was lower in PAD rats than in control rats. Tm was increased by ∼1.5°C and this increase was maintained for 30 min. This HT protocol was performed tweice daily for three continuous days. A greater blood pressure (BP) response to contraction was observed in PAD rats. HT attenuated the amplification of the BP response in PAD rats. HT also attenuated the enhancement of the BP response induced by the arterial injection of αβ-me ATP in PAD rats. In addition, HT attenuated the upregulation of the P2X3 and increased P2X currents in the DRG neurons of PAD rats. In conclusion, previous heat exposure plays an inhibitory role in modifying the exaggeration of the exercise pressor reflex in PAD and a reduction of the activity of the P2X receptor pathway is probably a part of mechanisms leading to the beneficial effects of HT.
Original language | English (US) |
---|---|
Pages (from-to) | 1491-1503 |
Number of pages | 13 |
Journal | Journal of Physiology |
Volume | 598 |
Issue number | 8 |
DOIs | |
State | Published - Apr 1 2020 |
All Science Journal Classification (ASJC) codes
- Physiology