Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties

Xiao Ye Wang, Thomas Dienel, Marco Di Giovannantonio, Gabriela Borin Barin, Neerav Kharche, Okan Deniz, José I. Urgel, Roland Widmer, Samuel Stolz, Luis Henrique De Lima, Matthias Muntwiler, Matteo Tommasini, Vincent Meunier, Pascal Ruffieux, Xinliang Feng, Roman Fasel, Klaus Müllen, Akimitsu Narita

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


We report on the surface-assisted synthesis and spectroscopic characterization of the hitherto longest periacene analogue with oxygen-boron-oxygen (OBO) segments along the zigzag edges, that is, a heteroatom-doped perihexacene 1. Surface-catalyzed cyclodehydrogenation successfully transformed the double helicene precursor 2, i.e., 12a,26a-dibora-12,13,26,27-tetraoxa-benzo[1,2,3-hi:4,5,6-h′i′]dihexacene, into the planar perihexacene analogue 1, which was visualized by scanning tunneling microscopy and noncontact atomic force microscopy. X-ray photoelectron spectroscopy, Raman spectroscopy, together with theoretical modeling, on both precursor 2 and product 1, provided further insights into the cyclodehydrogenation process. Moreover, the nonplanar precursor 2 underwent a conformational change upon adsorption on surfaces, and one-dimensional self-assembled superstructures were observed for both 2 and 1 due to the presence of OBO units along the zigzag edges.

Original languageEnglish (US)
Pages (from-to)4671-4674
Number of pages4
JournalJournal of the American Chemical Society
Issue number13
StatePublished - Apr 5 2017

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties'. Together they form a unique fingerprint.

Cite this