TY - GEN
T1 - Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units
AU - Chen, Yun
AU - Yang, Hui
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/11/2
Y1 - 2014/11/2
N2 - The rapid advancements of biomedical instrumentation and healthcare technology have resulted in data-rich environments in hospitals. However, the meaningful information extracted from rich datasets is limited. There is a dire need to go beyond current medical practices, and develop data-driven methods and tools that will enable and help (i) the handling of big data, (ii) the extraction of data-driven knowledge, (iii) the exploitation of acquired knowledge for optimizing clinical decisions. This present study focuses on the prediction of mortality rates in Intensive Care Units (ICU) using patient-specific healthcare recordings. It is worth mentioning that postsurgical monitoring in ICU leads to massive datasets with unique properties, e.g., variable heterogeneity, patient heterogeneity, and time asyncronization. To cope with the challenges in ICU datasets, we developed the postsurgical decision support system with a series of analytical tools, including data categorization, data pre-processing, feature extraction, feature selection, and predictive modeling. Experimental results show that the proposed data-driven methodology outperforms traditional approaches and yields better results based on the evaluation of real-world ICU data from 4000 subjects in the database. This research shows great potentials for the use of data-driven analytics to improve the quality of healthcare services.
AB - The rapid advancements of biomedical instrumentation and healthcare technology have resulted in data-rich environments in hospitals. However, the meaningful information extracted from rich datasets is limited. There is a dire need to go beyond current medical practices, and develop data-driven methods and tools that will enable and help (i) the handling of big data, (ii) the extraction of data-driven knowledge, (iii) the exploitation of acquired knowledge for optimizing clinical decisions. This present study focuses on the prediction of mortality rates in Intensive Care Units (ICU) using patient-specific healthcare recordings. It is worth mentioning that postsurgical monitoring in ICU leads to massive datasets with unique properties, e.g., variable heterogeneity, patient heterogeneity, and time asyncronization. To cope with the challenges in ICU datasets, we developed the postsurgical decision support system with a series of analytical tools, including data categorization, data pre-processing, feature extraction, feature selection, and predictive modeling. Experimental results show that the proposed data-driven methodology outperforms traditional approaches and yields better results based on the evaluation of real-world ICU data from 4000 subjects in the database. This research shows great potentials for the use of data-driven analytics to improve the quality of healthcare services.
UR - http://www.scopus.com/inward/record.url?scp=84943362206&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943362206&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2014.6944578
DO - 10.1109/EMBC.2014.6944578
M3 - Conference contribution
C2 - 25570946
AN - SCOPUS:84943362206
T3 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
SP - 4310
EP - 4314
BT - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Y2 - 26 August 2014 through 30 August 2014
ER -