Abstract
Accumulating evidence suggests that codeletion ofthe tumor suppressor genes Pten and p53 plays a crucial role in the development of castration-resistant prostate cancer invivo. However, the molecular mechanism underlying Pten- /p53-deficiency-driven prostate tumorigenesis remains incompletely understood. Building upon insights gained from our studies with Pten-/. p53-deficient mouse embryonic fibroblasts (MEFs), we report here that hexokinase 2 (HK2) is selectively upregulated by the combined loss of Pten and p53 in prostate cancer cells. Mechanistically, Pten deletion increases HK2 mRNA translation through the activation of the AKT-mTORC1-4EBP1 axis, and p53 loss enhances HK2 mRNA stability through the inhibition of miR143 biogenesis.Genetic studies demonstrate that HK2-mediated aerobic glycolysis, known as the Warburg effect, is required for Pten-/. p53-deficiency-driven tumor growth in xenograft mouse models of prostate cancer. Our findings suggest that HK2 might be a therapeutic target for prostate cancer patients carrying Pten and p53 mutations.
Original language | English (US) |
---|---|
Pages (from-to) | 1461-1474 |
Number of pages | 14 |
Journal | Cell Reports |
Volume | 8 |
Issue number | 5 |
DOIs | |
State | Published - 2014 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology