TY - GEN
T1 - Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge
AU - Li, Quan
AU - Chen, Lingwei
AU - Cai, Yong
AU - Wu, Dinghao
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - The healthcare industry has a wealth of data that can be used by researchers and medical professionals to infer a patient’s condition and intention to receive treatment using machine learning models. However, this line of research generally suffers from some limitations: (1) struggling to leverage structural interactions among patients; (2) attending to learn patient representations from electronic medical records (EMRs) but rarely considering supplementary contexts; and (3) overlooking EMR data imbalance issue. To address these limitations, in this paper, we propose a hierarchical graph neural network for patient treatment preference prediction. Doctors’ information and their viewing activities are first integrated as external knowledge with EMRs to construct the hierarchical graph, where a dual message passing paradigm is then devised to perform intra- and inter-subgraph aggregation to enrich patient representations and advance label propagation. To mitigate patient data imbalance issue, a community detection method is further designed to better prediction. Our experimental results demonstrate the state-of-the-art performance on patient treatment preference prediction.
AB - The healthcare industry has a wealth of data that can be used by researchers and medical professionals to infer a patient’s condition and intention to receive treatment using machine learning models. However, this line of research generally suffers from some limitations: (1) struggling to leverage structural interactions among patients; (2) attending to learn patient representations from electronic medical records (EMRs) but rarely considering supplementary contexts; and (3) overlooking EMR data imbalance issue. To address these limitations, in this paper, we propose a hierarchical graph neural network for patient treatment preference prediction. Doctors’ information and their viewing activities are first integrated as external knowledge with EMRs to construct the hierarchical graph, where a dual message passing paradigm is then devised to perform intra- and inter-subgraph aggregation to enrich patient representations and advance label propagation. To mitigate patient data imbalance issue, a community detection method is further designed to better prediction. Our experimental results demonstrate the state-of-the-art performance on patient treatment preference prediction.
UR - http://www.scopus.com/inward/record.url?scp=85173567702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85173567702&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-33380-4_16
DO - 10.1007/978-3-031-33380-4_16
M3 - Conference contribution
AN - SCOPUS:85173567702
SN - 9783031333798
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 204
EP - 215
BT - Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Proceedings
A2 - Kashima, Hisashi
A2 - Ide, Tsuyoshi
A2 - Peng, Wen-Chih
PB - Springer Science and Business Media Deutschland GmbH
T2 - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023
Y2 - 25 May 2023 through 28 May 2023
ER -