TY - JOUR
T1 - Hierarchical random additive model for the spanwise and wall-normal velocities in wall-bounded flows at high Reynolds numbers
AU - Yang, X. I.A.
AU - Baidya, R.
AU - Lv, Yu
AU - Marusic, I.
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/12
Y1 - 2018/12
N2 - At high Reynolds numbers, the logarithmic range in wall-bounded flows spans many scales. An important conceptual modeling framework of the logarithmic range is Townsend's attached eddy hypothesis [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)], where high Reynolds number wall-bounded flows are modeled as assemblies of space-filling, self-similar, and wall-attached eddies. Recently, Yang et al. [Phys. Rev. Fluids 1, 024402 (2016)10.1103/PhysRevFluids.1.024402] reinterpreted this hypothesis and developed the "hierarchical random additive process" model (HRAP), which provides further insights into the scaling implications of the attached eddies. For example, in a recent study [Yang, Phys. Rev. Fluids 2, 064602 (2017)10.1103/PhysRevFluids.2.064602], the HRAP model was used for making scaling predictions of the second-order structure function [ui′(x)-ui′(x′)][uj′(x)-uj′(x′)] in the logarithmic range, where ui's are the velocity fluctuations in the ith Cartesian direction. Here, we provide empirical support for this HRAP model using high-fidelity experimental data of all three components of velocity in a high Reynolds number boundary layer flow. We show that the spanwise velocity fluctuation can be modeled as a random additive process, and that the wall-normal velocity fluctuation is dominated by the closest neighboring wall-attached eddy. By accounting for all the three velocities in all the three Cartesian directions, the HRAP model is formally a well rounded model for the momentum-carrying scales in wall-bounded flows at high Reynolds numbers.
AB - At high Reynolds numbers, the logarithmic range in wall-bounded flows spans many scales. An important conceptual modeling framework of the logarithmic range is Townsend's attached eddy hypothesis [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)], where high Reynolds number wall-bounded flows are modeled as assemblies of space-filling, self-similar, and wall-attached eddies. Recently, Yang et al. [Phys. Rev. Fluids 1, 024402 (2016)10.1103/PhysRevFluids.1.024402] reinterpreted this hypothesis and developed the "hierarchical random additive process" model (HRAP), which provides further insights into the scaling implications of the attached eddies. For example, in a recent study [Yang, Phys. Rev. Fluids 2, 064602 (2017)10.1103/PhysRevFluids.2.064602], the HRAP model was used for making scaling predictions of the second-order structure function [ui′(x)-ui′(x′)][uj′(x)-uj′(x′)] in the logarithmic range, where ui's are the velocity fluctuations in the ith Cartesian direction. Here, we provide empirical support for this HRAP model using high-fidelity experimental data of all three components of velocity in a high Reynolds number boundary layer flow. We show that the spanwise velocity fluctuation can be modeled as a random additive process, and that the wall-normal velocity fluctuation is dominated by the closest neighboring wall-attached eddy. By accounting for all the three velocities in all the three Cartesian directions, the HRAP model is formally a well rounded model for the momentum-carrying scales in wall-bounded flows at high Reynolds numbers.
UR - http://www.scopus.com/inward/record.url?scp=85059392657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059392657&partnerID=8YFLogxK
U2 - 10.1103/PhysRevFluids.3.124606
DO - 10.1103/PhysRevFluids.3.124606
M3 - Article
AN - SCOPUS:85059392657
SN - 2469-990X
VL - 3
JO - Physical Review Fluids
JF - Physical Review Fluids
IS - 12
M1 - 124606
ER -