High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene

Xuetao Gan, Ren Jye Shiue, Yuanda Gao, Kin Fai Mak, Xinwen Yao, Luozhou Li, Attila Szep, Dennis Walker, James Hone, Tony F. Heinz, Dirk Englund

Research output: Contribution to journalArticlepeer-review

187 Scopus citations

Abstract

We demonstrate high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A silicon air-slot nanocavity provides strong overlap between the resonant optical field and graphene. Tuning the Fermi energy of the graphene layer to 0.85 eV enables strong control of its optical conductivity at telecom wavelengths, which allows modulation of cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. The cavity resonance at 1570 nm is found to undergo a shift in wavelength of nearly 2 nm, together with a 3-fold increase in quality factor. These observations enable a cavity-enhanced determination of graphene's complex optical sheet conductivity at different doping levels. Our simple device demonstrates the feasibility of high-contrast, low-power, and frequency-selective electro-optic modulators in graphene-integrated silicon photonic integrated circuits.

Original languageEnglish (US)
Pages (from-to)691-696
Number of pages6
JournalNano letters
Volume13
Issue number2
DOIs
StatePublished - Feb 13 2013

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene'. Together they form a unique fingerprint.

Cite this