TY - JOUR
T1 - High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems
AU - Zhang, Cheng
AU - Peng, Zhixiang
AU - Huang, Chunlei
AU - Zhang, Bingwen
AU - Xing, Chao
AU - Chen, Huamin
AU - Cheng, Huanyu
AU - Wang, Jun
AU - Tang, Shaolong
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/3
Y1 - 2021/3
N2 - Micro-supercapacitors are promising energy storage devices that can complement or even replace lithium-ion batteries in wearable and stretchable microelectronics. However, they often possess a relatively low energy density and limited mechanical stretchability. Here, we report an all-in-one planar micro-supercapacitor arrays (MSCAs) based on hybrid electrodes with ultrathin ZnP nanosheets anchored on 3D laser-induced graphene foams (ZnP@LIG) arranged in island-bridge device architecture. The hybrid electrodes with a large specific surface area demonstrate excellent ionic and electrical conductivities, impressive gravimetric (areal) capacitance of 1425 F g−1 (7.125 F cm−2) at 1 A g−1, and long-term stability. In addition to high energy (245 m Wh cm−2) and power (12.50 mW kg−1 at 145 m Wh cm−2) densities, the MSCAs with excellent cycling stability also showcase adjustable voltage and current outputs through serial and parallel connections of MSC cells in the island-bridge design, which also allows the system to be reversibly stretched up to 100%. Meanwhile, theoretical calculations validated by UV–vis absorption spectra partially suggest that the enhanced capacitance and rate capability may result from the improved electrical conductivity and number of adsorbed charged ions (Na+ in Na2SO4 aqueous electrolyte and K+ in PVA/KCl gel electrolyte) on the pseudocapacitive non-layered ultrathin ZnP nanosheets. The integration of the all-in-one stretchable MSCAs with a crumpled Au-based triboelectric nanogenerator and stretchable crumpled graphene-based strain sensor demonstrates a self-powered stretchable system. The coupled design principle of electronic materials and device architecture provides a promising method to develop high-performance wearable/stretchable energy storage devices and self-powered stretchable systems for future bio-integrated electronics.
AB - Micro-supercapacitors are promising energy storage devices that can complement or even replace lithium-ion batteries in wearable and stretchable microelectronics. However, they often possess a relatively low energy density and limited mechanical stretchability. Here, we report an all-in-one planar micro-supercapacitor arrays (MSCAs) based on hybrid electrodes with ultrathin ZnP nanosheets anchored on 3D laser-induced graphene foams (ZnP@LIG) arranged in island-bridge device architecture. The hybrid electrodes with a large specific surface area demonstrate excellent ionic and electrical conductivities, impressive gravimetric (areal) capacitance of 1425 F g−1 (7.125 F cm−2) at 1 A g−1, and long-term stability. In addition to high energy (245 m Wh cm−2) and power (12.50 mW kg−1 at 145 m Wh cm−2) densities, the MSCAs with excellent cycling stability also showcase adjustable voltage and current outputs through serial and parallel connections of MSC cells in the island-bridge design, which also allows the system to be reversibly stretched up to 100%. Meanwhile, theoretical calculations validated by UV–vis absorption spectra partially suggest that the enhanced capacitance and rate capability may result from the improved electrical conductivity and number of adsorbed charged ions (Na+ in Na2SO4 aqueous electrolyte and K+ in PVA/KCl gel electrolyte) on the pseudocapacitive non-layered ultrathin ZnP nanosheets. The integration of the all-in-one stretchable MSCAs with a crumpled Au-based triboelectric nanogenerator and stretchable crumpled graphene-based strain sensor demonstrates a self-powered stretchable system. The coupled design principle of electronic materials and device architecture provides a promising method to develop high-performance wearable/stretchable energy storage devices and self-powered stretchable systems for future bio-integrated electronics.
UR - http://www.scopus.com/inward/record.url?scp=85096483518&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096483518&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2020.105609
DO - 10.1016/j.nanoen.2020.105609
M3 - Article
AN - SCOPUS:85096483518
SN - 2211-2855
VL - 81
JO - Nano Energy
JF - Nano Energy
M1 - 105609
ER -