TY - JOUR
T1 - High-Energy-Density Dielectric Polymer Nanocomposites with Trilayered Architecture
AU - Liu, Feihua
AU - Li, Qi
AU - Cui, Jin
AU - Li, Zeyu
AU - Yang, Guang
AU - Liu, Yang
AU - Dong, Lijie
AU - Xiong, Chuanxi
AU - Wang, Hong
AU - Wang, Qing
N1 - Funding Information:
The work at the Pennsylvania State University was supported by the U.S. Office of Naval Research. F.L. thanks the fellowship from the China Scholar Council. The work of the Wuhan University of Technology was supported by the National Natural Science Foundation of China (51072151, 51673154). The work of Xi'an Jiaotong University was supported by the National Basic Research Program of China (2015CB654603).
Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/5/25
Y1 - 2017/5/25
N2 - The development of advanced dielectric materials with high electric energy densities is of crucial importance in modern electronics and electric power systems. Here, a new class of multilayer-structured polymer nanocomposites with high energy and power densities is presented. The outer layers of the trilayered structure are composed of boron nitride nanosheets dispersed in poly(vinylidene fluoride) (PVDF) matrix to provide high breakdown strength, while PVDF with barium strontium titanate nanowires forms the central layer to offer high dielectric constant of the resulting composites. The influence of the filler contents on the electrical polarization, breakdown strength, and energy density is examined. Simulations are carried out to model the electrical tree formation in the layered nanocomposites and to verify the experimental breakdown results. The trilayered polymer nanocomposite with an optimized filler content displays a discharged energy density of 20.5 J cm−3 at Weibull breakdown strength of 588 MV m−1, which is among the highest discharged energy densities reported so far. Moreover, the nanocomposite exhibits a superior power density of 0.91 MW cm−3, more than nine times that of the commercially available biaxially oriented polypropylene. The findings of this research provide a new design paradigm for high-performance dielectric polymer nanocomposites.
AB - The development of advanced dielectric materials with high electric energy densities is of crucial importance in modern electronics and electric power systems. Here, a new class of multilayer-structured polymer nanocomposites with high energy and power densities is presented. The outer layers of the trilayered structure are composed of boron nitride nanosheets dispersed in poly(vinylidene fluoride) (PVDF) matrix to provide high breakdown strength, while PVDF with barium strontium titanate nanowires forms the central layer to offer high dielectric constant of the resulting composites. The influence of the filler contents on the electrical polarization, breakdown strength, and energy density is examined. Simulations are carried out to model the electrical tree formation in the layered nanocomposites and to verify the experimental breakdown results. The trilayered polymer nanocomposite with an optimized filler content displays a discharged energy density of 20.5 J cm−3 at Weibull breakdown strength of 588 MV m−1, which is among the highest discharged energy densities reported so far. Moreover, the nanocomposite exhibits a superior power density of 0.91 MW cm−3, more than nine times that of the commercially available biaxially oriented polypropylene. The findings of this research provide a new design paradigm for high-performance dielectric polymer nanocomposites.
UR - http://www.scopus.com/inward/record.url?scp=85016023699&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016023699&partnerID=8YFLogxK
U2 - 10.1002/adfm.201606292
DO - 10.1002/adfm.201606292
M3 - Article
AN - SCOPUS:85016023699
SN - 1616-301X
VL - 27
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 20
M1 - 1606292
ER -