High-energy gamma-ray afterglows from low-luminosity gamma-ray bursts

Hao Ning He, Xiang Yu Wang, Yun Wei Yu, Peter Mészros

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


The observations of gamma-ray bursts (GRBs) such as 980425, 031203 and 060218, with luminosities much lower than those of other classic bursts, lead to the definition of a new class of GRBs - LL-GRBs. The nature of the outflow responsible for them is not yet clear. Two scenarios have been suggested: one is the conventional relativistic outflow with initial Lorentz factor of order of Γ0 ≳ 10 and the other is a trans-relativistic outflow with Γ0 ≃ 1-2. Here, we compare the high-energy gamma-ray afterglow emission from these two different models, taking into account both synchrotron self-inverse Compton (SSC) scattering and the external inverse Compton scattering due to photons from the cooling supernova or hypernova envelope (SNIC). We find that the conventional relativistic outflow model predicts a relatively high gamma-ray flux from SSC at early times (<10 4 s for typical parameters) with a rapidly decaying light curve, while in the trans-relativistic outflow model, one would expect a much flatter light curve of high-energy gamma-ray emission at early times, which could be dominated by both the SSC emission and the SNIC emission, depending on the properties of the underlying supernova and the shock parameter εe and εB. The Fermi Gamma-ray Space Telescope should be able to distinguish between the two models in the future.

Original languageEnglish (US)
Pages (from-to)1152-1162
Number of pages11
JournalAstrophysical Journal
Issue number2
StatePublished - Dec 1 2009

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'High-energy gamma-ray afterglows from low-luminosity gamma-ray bursts'. Together they form a unique fingerprint.

Cite this