TY - GEN
T1 - High energy neutrino emission and neutrino background from internal shocks of GRBs
AU - Murase, Kohta
AU - Nagataki, Shigehiro
PY - 2007
Y1 - 2007
N2 - High energy neutrino emission from GRBs is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of UHECRs. We find that the obtained neutrino background can be comparable with the prediction of Waxman & Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.
AB - High energy neutrino emission from GRBs is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of UHECRs. We find that the obtained neutrino background can be comparable with the prediction of Waxman & Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.
UR - http://www.scopus.com/inward/record.url?scp=34547478131&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547478131&partnerID=8YFLogxK
U2 - 10.1063/1.2735263
DO - 10.1063/1.2735263
M3 - Conference contribution
AN - SCOPUS:34547478131
SN - 0735404100
SN - 9780735404106
T3 - AIP Conference Proceedings
SP - 630
EP - 633
BT - SUSY06
T2 - SUSY06: 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions
Y2 - 12 June 2006 through 17 June 2006
ER -