TY - JOUR
T1 - High-fidelity simulations of the run-in process for a pebble-bed reactor
AU - Stewart, Ryan
AU - Balestra, Paolo
AU - Reger, David
AU - Merzari, Elia
AU - Strydom, Gerhard
N1 - Publisher Copyright:
© 2023
PY - 2024/1
Y1 - 2024/1
N2 - Pebble-bed reactors (PBRs) rely on a continual feed of fuel pebbles being cycled through the core. As a result, they require a “run-in” period in order to reach an equilibrium state. The run-in period for a PBR is a complex, time-dependent problem that requires the injection of new fuel, different types of fuel, and power increases. This complexity in the run-in makes it important to capture the physical processes in order to generate an accurate representation. The present work details the creation of a high-fidelity Monte Carlo methodology for analyzing the run-in and subsequent approach to equilibrium for PBRs. The methodology entails a Python module wrapped around Serpent so as to perform neutronics calculations, move pebbles, refuel the core, and discharge pebbles, thereby modeling the explicit behavior of the PBR run-in. Three run-in simulations (a constant temperature profile, a linear temperature profile, and a constant temperature profile using control rods) were examined in order to identify the key physical phenomena present in the run-in process. Utilizing kugelpy, we found the inclusion of a temperature profile to be important for accurately capturing a discharge burnup (around 141 MWd/kg), a consistent k-eff (around 1.005), and an average pebble power (around 2.5 kW/pebble) that all fall within acceptable limits.
AB - Pebble-bed reactors (PBRs) rely on a continual feed of fuel pebbles being cycled through the core. As a result, they require a “run-in” period in order to reach an equilibrium state. The run-in period for a PBR is a complex, time-dependent problem that requires the injection of new fuel, different types of fuel, and power increases. This complexity in the run-in makes it important to capture the physical processes in order to generate an accurate representation. The present work details the creation of a high-fidelity Monte Carlo methodology for analyzing the run-in and subsequent approach to equilibrium for PBRs. The methodology entails a Python module wrapped around Serpent so as to perform neutronics calculations, move pebbles, refuel the core, and discharge pebbles, thereby modeling the explicit behavior of the PBR run-in. Three run-in simulations (a constant temperature profile, a linear temperature profile, and a constant temperature profile using control rods) were examined in order to identify the key physical phenomena present in the run-in process. Utilizing kugelpy, we found the inclusion of a temperature profile to be important for accurately capturing a discharge burnup (around 141 MWd/kg), a consistent k-eff (around 1.005), and an average pebble power (around 2.5 kW/pebble) that all fall within acceptable limits.
UR - http://www.scopus.com/inward/record.url?scp=85174697119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85174697119&partnerID=8YFLogxK
U2 - 10.1016/j.anucene.2023.110193
DO - 10.1016/j.anucene.2023.110193
M3 - Article
AN - SCOPUS:85174697119
SN - 0306-4549
VL - 195
JO - Annals of Nuclear Energy
JF - Annals of Nuclear Energy
M1 - 110193
ER -