Abstract
Using dielectrophoretic assembly, we create anisotropic composites of BaTiO3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y -aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems.
Original language | English (US) |
---|---|
Article number | 074106 |
Journal | Journal of Applied Physics |
Volume | 104 |
Issue number | 7 |
DOIs | |
State | Published - 2008 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy