High-Flux Thermal Management with Supercritical Fluids

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

A novel thermal management approach is explored, which uses supercritical carbon dioxide (sCO2) as a working fluid to manage extreme heat fluxes in electronics cooling applications. In the pseudocritical region, sCO2 has extremely high volumetric thermal capacity, which can enable operation with low pumping requirements, and without the potential for two-phase critical heat flux (CHF) and flow instabilities. A model of a representative microchannel heat sink is evaluated with single-phase liquid water and FC-72, two-phase boiling R-134a, and sCO2. For a fixed pumping power, sCO2 is found to yield lower heat-sink wall temperatures than liquid coolants. Practical engineering challenges for supercritical thermal management systems are discussed, including the limits of predictive heat transfer models, narrow operating temperature ranges, high working pressures, and pump design criteria. Based on these findings, sCO2 is a promising candidate working fluid for cooling high heat flux electronics, but additional thermal transport research and engineering are needed before practical systems can be realized.

Original languageEnglish (US)
Article number124501
JournalJournal of Heat Transfer
Volume138
Issue number12
DOIs
StatePublished - Dec 1 2016

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'High-Flux Thermal Management with Supercritical Fluids'. Together they form a unique fingerprint.

Cite this