TY - JOUR
T1 - High intensity focused ultrasound atomization and erosion in healthy and tendinopathic tendons
AU - Smallcomb, Molly
AU - Simon, Julianna C.
N1 - Publisher Copyright:
© 2023 Institute of Physics and Engineering in Medicine.
PY - 2023/1/21
Y1 - 2023/1/21
N2 - Objective. High-intensity focused ultrasound (HIFU) can induce thermal and mechanical mechanisms in a well-defined focal volume of tissues. Histotripsy is a form of mechanical HIFU that can initiate and interact with bubble(s) to cause shock scattering and perhaps atomization within the bubble(s) to fractionate most soft tissues. Ultrasonic atomization, or the ejection of fine droplets from an acoustically-excited liquid exposed to air, has been shown to erode planar soft tissue surfaces, which has led to theories that atomization is a mechanism in histotripsy. However, healthy tendons show resistance to conventional histotripsy; pre-treatment of tendons with heat increases susceptibility to histotripsy fractionation. This study investigates ultrasonic atomization and erosion from planar healthy and tendinopathic tendon surfaces as we evaluate HIFU parameters for histotripsy in tendons. Approach. Forty-six ex vivo bovine tendon-air interfaces were pre-conditioned to surface wetting, heat baths of 20 °C (unaltered), 37 °C (body temperature), and 58 °C (collagen degradation), collagenase soaks for 1, 3, 5, and 24 h (mimicking tendinopathic tendons), and phosphate buffered saline soaks for 24 h. Ejected fragments, histology, and gross analysis determined erosion success. Tissue displacement from the HIFU radiation force was monitored with high-speed photography, and tissue relaxation was pixel-tracked and fit to a Kelvin-Voigt model to evaluate changes in viscoelastic properties. Main results. Results showed that atomization produced holes in 24 h collagenase tendons and surface pitting in 58 °C, 3 h, and 5 h collagenase tendons. Increased mound heights and viscoelastic constants in pre-heated (to 58 °C) and collagenase-soaking (3+ hours) tendinopathic models caused a decrease in elasticity and/or increase in viscosity, increasing susceptibility to erosion by HIFU atomization. Significance. Therefore, tendons with chronic tendinopathies may be more susceptible than healthy tendons to histotripsy fractionation.
AB - Objective. High-intensity focused ultrasound (HIFU) can induce thermal and mechanical mechanisms in a well-defined focal volume of tissues. Histotripsy is a form of mechanical HIFU that can initiate and interact with bubble(s) to cause shock scattering and perhaps atomization within the bubble(s) to fractionate most soft tissues. Ultrasonic atomization, or the ejection of fine droplets from an acoustically-excited liquid exposed to air, has been shown to erode planar soft tissue surfaces, which has led to theories that atomization is a mechanism in histotripsy. However, healthy tendons show resistance to conventional histotripsy; pre-treatment of tendons with heat increases susceptibility to histotripsy fractionation. This study investigates ultrasonic atomization and erosion from planar healthy and tendinopathic tendon surfaces as we evaluate HIFU parameters for histotripsy in tendons. Approach. Forty-six ex vivo bovine tendon-air interfaces were pre-conditioned to surface wetting, heat baths of 20 °C (unaltered), 37 °C (body temperature), and 58 °C (collagen degradation), collagenase soaks for 1, 3, 5, and 24 h (mimicking tendinopathic tendons), and phosphate buffered saline soaks for 24 h. Ejected fragments, histology, and gross analysis determined erosion success. Tissue displacement from the HIFU radiation force was monitored with high-speed photography, and tissue relaxation was pixel-tracked and fit to a Kelvin-Voigt model to evaluate changes in viscoelastic properties. Main results. Results showed that atomization produced holes in 24 h collagenase tendons and surface pitting in 58 °C, 3 h, and 5 h collagenase tendons. Increased mound heights and viscoelastic constants in pre-heated (to 58 °C) and collagenase-soaking (3+ hours) tendinopathic models caused a decrease in elasticity and/or increase in viscosity, increasing susceptibility to erosion by HIFU atomization. Significance. Therefore, tendons with chronic tendinopathies may be more susceptible than healthy tendons to histotripsy fractionation.
UR - http://www.scopus.com/inward/record.url?scp=85145966793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145966793&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/aca9b7
DO - 10.1088/1361-6560/aca9b7
M3 - Article
C2 - 36595243
AN - SCOPUS:85145966793
SN - 0031-9155
VL - 68
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 2
M1 - 025005
ER -