Abstract
Three techniques for measuring high voltage/power piezoelectric properties, which have been developed recently, are compared: a voltage-constant piezoelectric resonance method, a current-constant piezoelectric resonance method, and a pulse drive method. The conventional resonance method with a constant voltage circuit exhibits significant distortion (or a hysteresis) in the resonance frequency spectrum under a high vibration level due to large elastic non-linearity, which limits precise determination of the electromechanical coupling parameters. To the contrary, the resonance method with a constant current circuit (i.e., constant velocity) can determine the coupling parameters more precisely from a perfectly-symmetrical resonance spectrum. The general problem in both resonance methods is heat generation in the sample during the measurement. In order to separate the temperature characteristic from the non-linearity, it is recommended that the pulse method be used in parallel, even though the accuracy is not very high.
Original language | English (US) |
---|---|
Pages (from-to) | 33-40 |
Number of pages | 8 |
Journal | Journal of Electroceramics |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - 1998 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Mechanics of Materials
- Materials Chemistry
- Electrical and Electronic Engineering