High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design

Gahyun Baek, Ruggero Rossi, Pascal E. Saikaly, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Microbial electrosynthesis (MES) cells use renewable energy to convert carbon dioxide into valuable chemical products such as methane and acetate, but chemical production rates are low and pH changes can adversely impact biocathodes. To overcome these limitations, an MES reactor was designed with a zero-gap electrode configuration with a cation exchange membrane (CEM) to achieve a low internal resistance, and a vapor-fed electrode to minimize pH changes. Liquid catholyte was pumped through a carbon felt cathode inoculated with anaerobic digester sludge, with humidified N2 gas flowing over the abiotic anode (Ti or C with a Pt catalyst) to drive water splitting. The ohmic resistance was 2.4 ± 0.5 mΩ m2, substantially lower than previous bioelectrochemical systems (20–25 mΩ m2), and the catholyte pH remained near-neutral (6.6–7.2). The MES produced a high methane production rate of 2.9 ± 1.2 L/L-d (748 mmol/m2-d, 17.4 A/m2; Ti/Pt anode) at a relatively low applied voltage of 3.1 V. In addition, acetate was produced at a rate of 940 ± 250 mmol/m2-d with 180 ± 30 mmol/m2-d for propionate. The biocathode microbial community was dominated by the methanogens of the genus Methanobrevibacter, and the acetogen of the genus Clostridium sensu stricto 1. These results demonstrate the utility of this zero-gap cell and vapor-fed anode design for increasing rates of methane and chemical production in MES.

Original languageEnglish (US)
Article number118597
JournalWater Research
Volume219
DOIs
StatePublished - Jul 1 2022

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Civil and Structural Engineering
  • Ecological Modeling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design'. Together they form a unique fingerprint.

Cite this