TY - JOUR
T1 - High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration
AU - Trebotich, David
AU - Adams, Mark F.
AU - Molins, Sergi
AU - Steefel, Carl I.
AU - Shen, Chaopeng
N1 - Publisher Copyright:
© 1999-2011 IEEE.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - New investigative tools, combined with experiments and computational methods, are being developed to build a next-generation understanding of molecular-to-pore-scale processes in fluid-rock systems and to demonstrate the ability to control critical aspects of flow and transport in porous rock media, in particular, as applied to geologic sequestration of CO2. Of scientific interest is to establish the rules governing emergent behavior at the porous-continuum macroscale under far from equilibrium conditions by carefully understanding the behavior at the underlying pore microscale. To this end, the authors present a direct numerical simulation modeling capability that can resolve flow and transport processes in geometric features obtained from the image data of realistic pore space at unprecedented scale and resolution. Here, they focus on scaling a new algorithmic approach based on embedded boundary, finite-volume methods and algebraic multigrid. They demonstrate the scalability of this new capability, known as Chombo-Crunch, to more than 100,000 processor cores and show results from pore-scale flow and transport in the realistic pore space obtained from image data.
AB - New investigative tools, combined with experiments and computational methods, are being developed to build a next-generation understanding of molecular-to-pore-scale processes in fluid-rock systems and to demonstrate the ability to control critical aspects of flow and transport in porous rock media, in particular, as applied to geologic sequestration of CO2. Of scientific interest is to establish the rules governing emergent behavior at the porous-continuum macroscale under far from equilibrium conditions by carefully understanding the behavior at the underlying pore microscale. To this end, the authors present a direct numerical simulation modeling capability that can resolve flow and transport processes in geometric features obtained from the image data of realistic pore space at unprecedented scale and resolution. Here, they focus on scaling a new algorithmic approach based on embedded boundary, finite-volume methods and algebraic multigrid. They demonstrate the scalability of this new capability, known as Chombo-Crunch, to more than 100,000 processor cores and show results from pore-scale flow and transport in the realistic pore space obtained from image data.
UR - http://www.scopus.com/inward/record.url?scp=84903693050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903693050&partnerID=8YFLogxK
U2 - 10.1109/MCSE.2014.77
DO - 10.1109/MCSE.2014.77
M3 - Article
AN - SCOPUS:84903693050
SN - 1521-9615
VL - 16
SP - 22
EP - 31
JO - Computing in Science and Engineering
JF - Computing in Science and Engineering
IS - 6
M1 - 6970989
ER -