TY - JOUR
T1 - High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells
AU - Yang, Xiaonan
AU - Chen, Zhuofa
AU - Miao, Jun
AU - Cui, Liwang
AU - Guan, Weihua
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/15
Y1 - 2017/12/15
N2 - This work reports a high throughput and label-free microfluidic cell deformability sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). The sensor relies on differentiating the RBC deformability (a mechanical biomarker) that is highly correlated with the infection status. The cell deformability is measured by evaluating the transit time when each individual RBC squeezes through a microscale constriction (cross-section ~5 µm×5 µm). More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ~500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. Using Pf-iRBCs at 0.1% parasitemia as a testing sample, the microfluidic deformability sensor achieved an excellent sensitivity (94.29%), specificity (86.67%) and accuracy (92.00%) in a blind test, comparable to the gold standard of the blood smear microscopy. As a supplement technology to the microscopy and flow cytometry, the microfluidic deformability sensor would possibly allow for label-free, rapid and cost-effective parasitemia quantification and stage determination for malaria in remote regions.
AB - This work reports a high throughput and label-free microfluidic cell deformability sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). The sensor relies on differentiating the RBC deformability (a mechanical biomarker) that is highly correlated with the infection status. The cell deformability is measured by evaluating the transit time when each individual RBC squeezes through a microscale constriction (cross-section ~5 µm×5 µm). More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1 min with a throughput ~500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. Using Pf-iRBCs at 0.1% parasitemia as a testing sample, the microfluidic deformability sensor achieved an excellent sensitivity (94.29%), specificity (86.67%) and accuracy (92.00%) in a blind test, comparable to the gold standard of the blood smear microscopy. As a supplement technology to the microscopy and flow cytometry, the microfluidic deformability sensor would possibly allow for label-free, rapid and cost-effective parasitemia quantification and stage determination for malaria in remote regions.
UR - http://www.scopus.com/inward/record.url?scp=85023170054&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023170054&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2017.07.019
DO - 10.1016/j.bios.2017.07.019
M3 - Article
C2 - 28711027
AN - SCOPUS:85023170054
SN - 0956-5663
VL - 98
SP - 408
EP - 414
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
ER -