TY - JOUR
T1 - High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications
AU - Pal, Vaibhav
AU - Singh, Yogendra Pratap
AU - Gupta, Deepak
AU - Alioglu, Mecit Altan
AU - Nagamine, Momoka
AU - Kim, Myoung Hwan
AU - Ozbolat, Ibrahim T.
N1 - Publisher Copyright:
© 2023 The Author(s). Published by IOP Publishing Ltd.
PY - 2023/7
Y1 - 2023/7
N2 - Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner. To test its robustness, microgels of multiple hydrogels and their combination, including alginate (Alg), gelatin methacrylate (GelMA) and Alg-GelMA, were formed at a maximum production rate of ∼65 000 microgels s−1 while retaining circularity and a size range of 50-500 µm based on varying air pressure levels. The ACAD platform allowed single and multiple cell encapsulation with 74 ± 6% efficiency. These microgels illustrated appealing rheological properties such as yield stress, viscosity, and shear modulus for bioprinting applications. Specifically, Alg microgels have the potential to be used as a sacrificial support bath while GelMA microgels have potential for direct extrusion both on their own or when loaded in a bulk GelMA hydrogel. Generated microgels showed high cell viability (>90%) and proliferation of MDA-MB-231 and human dermal fibroblasts over seven days in both encapsulation and scaffolding applications, particularly for GelMA microgels. The developed strategy provides a facile and rapid approach without any complex or expensive consumables and accessories for scalable high-throughput microgel production for cell therapy, tissue regeneration and 3D bioprinting applications.
AB - Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner. To test its robustness, microgels of multiple hydrogels and their combination, including alginate (Alg), gelatin methacrylate (GelMA) and Alg-GelMA, were formed at a maximum production rate of ∼65 000 microgels s−1 while retaining circularity and a size range of 50-500 µm based on varying air pressure levels. The ACAD platform allowed single and multiple cell encapsulation with 74 ± 6% efficiency. These microgels illustrated appealing rheological properties such as yield stress, viscosity, and shear modulus for bioprinting applications. Specifically, Alg microgels have the potential to be used as a sacrificial support bath while GelMA microgels have potential for direct extrusion both on their own or when loaded in a bulk GelMA hydrogel. Generated microgels showed high cell viability (>90%) and proliferation of MDA-MB-231 and human dermal fibroblasts over seven days in both encapsulation and scaffolding applications, particularly for GelMA microgels. The developed strategy provides a facile and rapid approach without any complex or expensive consumables and accessories for scalable high-throughput microgel production for cell therapy, tissue regeneration and 3D bioprinting applications.
UR - http://www.scopus.com/inward/record.url?scp=85152161676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85152161676&partnerID=8YFLogxK
U2 - 10.1088/1758-5090/acc4eb
DO - 10.1088/1758-5090/acc4eb
M3 - Article
C2 - 36927673
AN - SCOPUS:85152161676
SN - 1758-5082
VL - 15
JO - Biofabrication
JF - Biofabrication
IS - 3
M1 - 035001
ER -