High-z gamma-ray bursts unraveling the dark ages and extreme space-time mission - HiZ-GUNDAM

Wide Field X-ray Monitor Collaboration, Near Infrared Telescope Collaboration, Satellite System Collaboration, Science Collaboration, Follow-up Collaboration

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

HiZ-GUNDAM is a future satellite mission whose mission concept was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA's competitive medium-class mission. HiZ-GUNDAM will lead time-domain astronomy in 2030s, and its key sciences are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. Two mission payloads are aboard HiZ-GUNDAM to realize these two scientific issues. The wide field X-ray monitors which consist of Lobster Eye optics array and focal imaging sensor, monitor ~0.5 steradian field of view in 0.5-4 keV energy range. The near infrared telescope with an aperture size of 30 cm in diameter performs simultaneous 5-band photometric observation in 0.5-2.5 µm wavelength with Koester's prism for X-ray transients discovered by Wide Field X-ray Monitor. In this paper, we introduce the mission overview of HiZ-GUNDAM while the information contained herein may change in future studies.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2024
Subtitle of host publicationUltraviolet to Gamma Ray
EditorsJan-Willem A. den Herder, Shouleh Nikzad, Kazuhiro Nakazawa
PublisherSPIE
ISBN (Electronic)9781510675094
DOIs
StatePublished - 2024
EventSpace Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray - Yokohama, Japan
Duration: Jun 16 2024Jun 21 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13093
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray
Country/TerritoryJapan
CityYokohama
Period6/16/246/21/24

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'High-z gamma-ray bursts unraveling the dark ages and extreme space-time mission - HiZ-GUNDAM'. Together they form a unique fingerprint.

Cite this