TY - JOUR
T1 - Higher CSF Ferritin Heavy-Chain (Fth1) and Transferrin Predict Better Neurocognitive Performance in People with HIV
AU - Kaur, Harpreet
AU - Bush, William S.
AU - Letendre, Scott L.
AU - Ellis, Ronald J.
AU - Heaton, Robert K.
AU - Patton, Stephanie M.
AU - Connor, James R.
AU - Samuels, David C.
AU - Franklin, Donald R.
AU - Hulgan, Todd
AU - Kallianpur, Asha R.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/10
Y1 - 2021/10
N2 - HIV-associated neurocognitive disorder (HAND) remains prevalent despite antiretroviral therapy and involves white matter damage in the brain. Although iron is essential for myelination and myelin maintenance/repair, its role in HAND is largely unexplored. We tested the hypotheses that cerebrospinal fluid (CSF) heavy-chain ferritin (Fth1) and transferrin, proteins integral to iron delivery and myelination, are associated with neurocognitive performance in people with HIV (PWH). Fth1, transferrin, and the pro-inflammatory cytokines TNF-α and IL-6 were quantified in CSF at baseline (entry) in 403 PWH from a prospective observational study who underwent serial, comprehensive neurocognitive assessments. Associations of Fth1 and transferrin with Global Deficit Score (GDS)-defined neurocognitive performance at baseline and 30–42 months of follow-up were evaluated by multivariable regression. While not associated with neurocognitive performance at baseline, higher baseline CSF Fth1 predicted significantly better neurocognitive performance over 30 months in all PWH (p < 0.05), in PWH aged < 50 at 30, 36, and 42 months (all p < 0.05), and in virally suppressed PWH at all three visit time-points (all p < 0.01). Higher CSF transferrin was associated with superior neurocognitive performance at all visits, primarily in viremic individuals (all p < 0.05). All associations persisted after adjustment for neuro-inflammation. In summary, higher CSF Fth1 is neuroprotective over prolonged follow-up in all and virally suppressed PWH, while higher CSF transferrin may be most neuroprotective during viremia. We speculate that higher CSF levels of these critical iron-delivery proteins support improved myelination and consequently, neurocognitive performance in PWH, providing a rationale for investigating their role in interventions to prevent and/or treat HAND.
AB - HIV-associated neurocognitive disorder (HAND) remains prevalent despite antiretroviral therapy and involves white matter damage in the brain. Although iron is essential for myelination and myelin maintenance/repair, its role in HAND is largely unexplored. We tested the hypotheses that cerebrospinal fluid (CSF) heavy-chain ferritin (Fth1) and transferrin, proteins integral to iron delivery and myelination, are associated with neurocognitive performance in people with HIV (PWH). Fth1, transferrin, and the pro-inflammatory cytokines TNF-α and IL-6 were quantified in CSF at baseline (entry) in 403 PWH from a prospective observational study who underwent serial, comprehensive neurocognitive assessments. Associations of Fth1 and transferrin with Global Deficit Score (GDS)-defined neurocognitive performance at baseline and 30–42 months of follow-up were evaluated by multivariable regression. While not associated with neurocognitive performance at baseline, higher baseline CSF Fth1 predicted significantly better neurocognitive performance over 30 months in all PWH (p < 0.05), in PWH aged < 50 at 30, 36, and 42 months (all p < 0.05), and in virally suppressed PWH at all three visit time-points (all p < 0.01). Higher CSF transferrin was associated with superior neurocognitive performance at all visits, primarily in viremic individuals (all p < 0.05). All associations persisted after adjustment for neuro-inflammation. In summary, higher CSF Fth1 is neuroprotective over prolonged follow-up in all and virally suppressed PWH, while higher CSF transferrin may be most neuroprotective during viremia. We speculate that higher CSF levels of these critical iron-delivery proteins support improved myelination and consequently, neurocognitive performance in PWH, providing a rationale for investigating their role in interventions to prevent and/or treat HAND.
UR - http://www.scopus.com/inward/record.url?scp=85116547421&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116547421&partnerID=8YFLogxK
U2 - 10.1007/s12035-021-02433-7
DO - 10.1007/s12035-021-02433-7
M3 - Article
C2 - 34195939
AN - SCOPUS:85116547421
SN - 0893-7648
VL - 58
SP - 4842
EP - 4855
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 10
ER -