Abstract
Spin-dependent nonlinear processes in organic materials such as singlet-fission and triplet-triplet annihilation could increase the performance for photovoltaics, detectors, and light emitting diodes. Rubrene/C 60 light emitting diodes exhibit a distinct low voltage (half-bandgap) threshold for emission. Two origins for the low voltage turn-on have been proposed: (i) Auger assisted energy up-conversion, and (ii) triplet-triplet annihilation. We test these proposals by systematically altering the rubrene/C 60 interface kinetics by introducing thin interlayers. Quantitative analysis of the unmodified rubrene/C 60 device suggests that higher order processes can be ruled out as the origin of the sub-bandgap turn-on. Rather, band-to-band recombination is the most likely radiative recombination process. However, insertion of a bathocuproine layer yields a 3-fold increase in luminance compared to the unmodified device. This indicates that suppression of parasitic interface processes by judicious modification of the interface allows a triplet-triplet annihilation channel to be observed.
Original language | English (US) |
---|---|
Article number | 227 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy