Higher-order kernel semiparametric M-estimation of long memory

Peter M. Robinson, Marc Henry

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Econometric interest in the possibility of long memory has developed, as a flexible alternative to or compromise between the usual short memory or unit root prescriptions, for example in the context of modelling cointegrating or other relationships and in describing the dependence structure of nonlinear functions of financial returns. Semiparametric methods of estimating the memory parameter can avoid bias incurred by misspecification of the short memory component. We introduce a broad class of such semiparametric estimates that also covers pooling across frequencies. A leading "Box-Cox" sub-class, indexed by a single tuning parameter, interpolates between the popular local log-periodogram and local Whittle estimates, leading to a smooth interpolation of asymptotic variances. The bias of these two estimates also differs to higher order, and we also show how bias, and asymptotic mean-squared error, can be reduced, across the class of estimates studied, by means of a suitable version of higher-order kernels. We thence calculate an optimal bandwidth (the number of low-frequency periodogram ordinates employed) which minimizes this mean-squared error. Finite sample performance is studied in a small Monte Carlo experiment, and an empirical application to intra-day foreign exchange returns is included.

Original languageEnglish (US)
Pages (from-to)1-27
Number of pages27
JournalJournal of Econometrics
Issue number1
StatePublished - May 2003

All Science Journal Classification (ASJC) codes

  • Economics and Econometrics


Dive into the research topics of 'Higher-order kernel semiparametric M-estimation of long memory'. Together they form a unique fingerprint.

Cite this