Abstract
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multimessenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a number of AGN have been observed. We discuss the science of HAWC, summarize the status of the experiment, and highlight first results from analysis of the data.
Original language | English (US) |
---|---|
Article number | 025 |
Journal | Proceedings of Science |
Volume | 30-July-2015 |
State | Published - 2015 |
Event | 34th International Cosmic Ray Conference, ICRC 2015 - The Hague, Netherlands Duration: Jul 30 2015 → Aug 6 2015 |
All Science Journal Classification (ASJC) codes
- General