Abstract
Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5(OH)8Cl2⋅H2O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5(OH)8Cl2⋅H2O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm−1 even at −70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl−. The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm−2. Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at −50 °C, and retain ≈30 % capacity at −70 °C of that at 20 °C.
Original language | English (US) |
---|---|
Pages (from-to) | 18845-18851 |
Number of pages | 7 |
Journal | Angewandte Chemie - International Edition |
Volume | 60 |
Issue number | 34 |
DOIs | |
State | Published - Aug 16 2021 |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry