HiTANet: Hierarchical Time-Aware Attention Networks for Risk Prediction on Electronic Health Records

Junyu Luo, Muchao Ye, Cao Xiao, Fenglong Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

148 Scopus citations

Abstract

Deep learning methods especially recurrent neural network based models have demonstrated early success in disease risk prediction on longitudinal patient data. Existing works follow a strong assumption to implicitly assume the stationary disease progression during each time period, and thus, take a homogeneous way to decay the information from previous time steps for all patients. However,in reality, disease progression is non-stationary. Besides, the key time steps for a target disease vary among patients. To leverage time information for risk prediction in a more reasonable way, we propose a new hierarchical time-aware attention network, named HiTANet, which imitates the decision making process of doctors inrisk prediction. Particularly, HiTANet models time information in local and global stages. The local evaluation stage has a time aware Transformer that embeds time information into visit-level embed-ding and generates local attention weight for each visit. The global synthesis stage further adopts a time-aware key-query attention mechanism to assign global weights to different time steps. Finally, the two types of attention weights are dynamically combined to generate the patient representations for further risk prediction. We evaluate HiTANet on three real-world datasets. Compared with the best results among twelve competing baselines, HiTANet achieves over 7% in terms of F1 score on all datasets, which demonstrates the effectiveness of the proposed model and the necessity of modeling time information in risk prediction task.

Original languageEnglish (US)
Title of host publicationKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages647-656
Number of pages10
ISBN (Electronic)9781450379984
DOIs
StatePublished - Aug 23 2020
Event26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, United States
Duration: Aug 23 2020Aug 27 2020

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Country/TerritoryUnited States
CityVirtual, Online
Period8/23/208/27/20

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'HiTANet: Hierarchical Time-Aware Attention Networks for Risk Prediction on Electronic Health Records'. Together they form a unique fingerprint.

Cite this