Holographic Nano-Imaging of Terahertz Dirac Plasmon Polaritons in Topological Insulator Antenna Resonators

Valentino Pistore, Leonardo Viti, Chiara Schiattarella, Zhengtianye Wang, Stephanie Law, Oleg Mitrofanov, Miriam S. Vitiello

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Excitation of Dirac plasmon polaritons (DPPs) in bi-dimensional materials have attracted considerable interest in recent years, both from perspectives of understanding their physics and exploring their transformative potential for nanophotonic devices, including ultra-sensitive plasmonic sensors, ultrafast saturable absorbers, modulators, and switches. Topological insulators (TIs) represent an ideal technological platform in this respect because they can support plasmon polaritons formed by Dirac carriers in the topological surface states. Tracing propagation of DPPs is a very challenging task, particularly at terahertz (THz) frequencies, where the DPP wavelength becomes over one order of magnitude shorter than the free space photon wavelength. Furthermore, severe attenuation hinders the comprehensive analysis of their characteristics. Here, the properties of DPPs in real TI-based devices are revealed. Bi2Se3 rectangular antennas can efficiently confine the propagation of DPPs to a single dimension and, as a result, enhance the DPPs visibility despite the strong intrinsic attenuation. The plasmon dispersion and loss properties from plasmon profiles are experimentally determined, along the antennas, obtained using holographic near-field nano-imaging in a wide range of THz frequencies, from 2.05 to 4.3 THz. The detailed investigation of the unveiled DPP properties can guide the design of novel topological quantum devices exploiting their directional propagation.

Original languageEnglish (US)
Article number2308116
JournalSmall
Volume20
Issue number22
DOIs
StatePublished - May 29 2024

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'Holographic Nano-Imaging of Terahertz Dirac Plasmon Polaritons in Topological Insulator Antenna Resonators'. Together they form a unique fingerprint.

Cite this